• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples / Mishchenko-Fomenko subalgebras of universal enveloping algebras of simple Lie algebras

Cardoso, Maria Clara 02 August 2019 (has links)
Nesse trabalho introduzimos as subálgebras de Mishchenko-Fomenko. Apresentamos o problema de Vinberg e a solução de Feigin, Frenkel e Toledano-Laredo em Feigin, Frenkel e Toledano-Laredo (2010) Também é mostrada a solução para as álgebras de Lie de tipo A apresentada em Futorny e Molev (2015). É estudado também o artigo Molev (2013) onde são apresentados geradores do centro de Feigin-Frenkel para as álgebras de Lie de tipo B, C e D. Também são introduzidas as subálgebras de Gelfand-Tsetlin, subálgebras das álgebras envolventes universais das álgebras de Lie de tipo A. Apresentamos uma definição de súbálgebra de Gelfand-Tsetlin para as álgebras de Lie de tipo C, introduzida em Molev e Yakimova (2017). São exibidas as variedades de Gelfand-Tsetlin de $\\mathfrak_$ e $\\mathfrak_$, sendo provado que a variedade de Gelfand-Tsetlin de $\\mathfrak_$ é equidimensional de dimensão 4. Também é demonstrado um novo resultado sobre a equidimensionalidade de $\\mathfrak_$. / In this dissertation, we introduce the Mishchenko-Fomenko subalgebras. We show Vinberg\'s problem and the solution given by Feigin, Frenkel and Toledano-Laredo in Feigin, Frenkel and Toledano-Laredo (2010). We also show a solution for Lie algebras of type A found in Futorny and Molev (2015). We study the article Molev (2013) where generators for the Feigin-Frenkel center are shown for Lie algebras of type B, C and D. We introduce the Gelfand-Tsetlin subalgebras, which are subalgebras of the universal enveloping algebras of Lie algebras of type A. We show a definition of Gelfand-Tsetlin for Lie algebras of type C, introduced in Molev and Yakimova (2017). We exhibit the Gelfand-Tsetlin varieties related to $\\mathfrak_$ and $\\mathfrak_$. We prove that the Gelfand-Tsetlin variety for $\\mathfrak_$ is equidimensional of dimension 4 and we prove a new result about the equidimensionality of $\\mathfrak_$.

Page generated in 0.0576 seconds