• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 18
  • 16
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Large-scale gene expression profiling data of bone marrow stromal cells from osteoarthritic donors

Stiehler, Maik, Rauh, Juliane, Bünger, Cody, Jacobi, Angela, Vater, Corina, Schildberg, Theresa, Liebers, Cornelia, Günther, Klaus-Peter, Bretschneider, Henriette 27 January 2017 (has links)
This data article contains data related to the research article entitled, 'in vitro characterization of bone marrow stromal cells from osteoarthritic donors' [1]. Osteoarthritis (OA) represents the main indication for total joint arthroplasty and is one of the most frequent degenerative joint disorders. However, the exact etiology of OA remains unknown. Bone marrow stromal cells (BMSCs) can be easily isolated from bone marrow aspirates and provide an excellent source of progenitor cells. The data shows the identification of pivotal genes and pathways involved in osteoarthritis by comparing gene expression patterns of BMSCs from osteoarthritic versus healthy donors using an array-based approach.
62

CLUSTERING AND VISUALIZATION OF GENOMIC DATA

Sutharzan, Sreeskandarajan 26 July 2019 (has links)
No description available.
63

Utilisation d'algorithmes génétiques pour l'identification systématique de réseaux de gènes co-régulés. / Using genetic algorithms to systematically identify co-regulated genes networks

Janbain, Ali 16 July 2019 (has links)
L’objectif de ce travail est de mettre au point une nouvelle approche automatique pour identifier les réseaux de gènes concourant à une même fonction biologique. Ceci permet une meilleure compréhension des phénomènes biologiques et notamment des processus impliqués dans les maladies telles que les cancers. Différentes stratégies ont été développées pour essayer de regrouper les gènes d’un organisme selon leurs relations fonctionnelles : génétique classique et génétique moléculaire. Ici, nous utilisons une propriété connue des réseaux de gènes fonctionnellement liés à savoir que ces gènes sont généralement co-régulés et donc co-exprimés. Cette co-régulation peut être mise en évidence par des méta-analyses de données de puces à ADN (micro-arrays) telles que Gemma ou COXPRESdb. Dans un travail précédent [Al Adhami et al., 2015], la topologie d’un réseau de co-expression de gènes a été caractérisé en utilisant deux paramètres de description des réseaux qui discriminent des groupes de gènes sélectionnés aléatoirement (modules aléatoires, RM) de groupes de gènes avec des liens fonctionnels connus (modules fonctionnels, FM), c’est-à-dire des gènes appartenant au même processus biologique GO. Dans le présent travail, nous avons cherché à généraliser cette approche et à proposer une méthode, appelée TopoFunc, pour améliorer l’annotation existante de la fonction génique. Nous avons d’abord testé différents descripteurs topologiques du réseau de co-expression pour sélectionner ceux qui identifient le mieux des modules fonctionnels. Puis, nous avons constitué une base de données rassemblant des modules fonctionnels et aléatoires, pour lesquels, sur la base des descripteurs sélectionnés, nous avons construit un modèle de discrimination LDA [Friedman et al., 2001] permettant, pour un sous-ensemble de gènes donné, de prédire son type (fonctionnel ou non). Basée sur la méthode de similarité de gènes travaillée par Wang et ses collègues [Wang et al., 2007], nous avons calculé un score de similarité fonctionnelle entre les gènes d’un module. Nous avons combiné ce score avec celui du modèle LDA dans une fonction de fitness implémenté dans un algorithme génétique (GA). À partir du processus biologique d’ontologie de gènes donné (GO-BP), AG visait à éliminer les gènes faiblement co-exprimés avec la plus grande clique de GO-BP et à ajouter des gènes «améliorant» la topologie et la fonctionnalité du module. Nous avons testé TopoFunc sur 193 GO-BP murins comprenant 50-100 gènes et avons montré que TopoFunc avait agrégé un certain nombre de nouveaux gènes avec le GO-BP initial tout en améliorant la topologie des modules et la similarité fonctionnelle. Ces études peuvent être menées sur plusieurs espèces (homme, souris, rat, et possiblement poulet et poisson zèbre) afin d’identifier des modules fonctionnels conservés au cours de l’évolution. / The aim of this work is to develop a new automatic approach to identify networks of genes involved in the same biological function. This allows a better understanding of the biological phenomena and in particular of the processes involved in diseases such as cancers. Various strategies have been developed to try to cluster genes of an organism according to their functional relationships : classical genetics and molecular genetics. Here we use a well-known property of functionally related genes mainly that these genes are generally co-regulated and therefore co-expressed. This co-regulation can be detected by microarray meta-analyzes databases such as Gemma or COXPRESdb. In a previous work [Al Adhami et al., 2015], the topology of a gene coexpression network was characterized using two description parameters of networks that discriminate randomly selected groups of genes (random modules, RM) from groups of genes with known functional relationship (functional modules, FM), e.g. genes that belong to the same GO Biological Process. We first tested different topological descriptors of the co-expression network to select those that best identify functional modules. Then, we built a database of functional and random modules for which, based on the selected descriptors, we constructed a discrimination model (LDA)[Friedman et al., 2001] allowing, for a given subset of genes, predict its type (functional or not). Based on the similarity method of genes worked by Wang and co-workers [Wang et al., 2007], we calculated a functional similarity score between the genes of a module. We combined this score with that of the LDA model in a fitness function implemented in a genetic algorithm (GA). Starting from a given Gene Ontology Biological Process (GO-BP), AG aimed to eliminate genes that were weakly coexpressed with the largest clique of the GO-BP and to add genes that "improved" the topology and functionality of the module. We tested TopoFunc on the 193 murine GO-BPs comprising 50-100 genes and showed that TopoFunc aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. These studies can be conducted on several species (humans, mice, rats, and possibly chicken and zebrafish) to identify functional modules preserved during evolution.
64

Word-sense disambiguation in biomedical ontologies

Alexopoulou, Dimitra 11 June 2010 (has links)
With the ever increase in biomedical literature, text-mining has emerged as an important technology to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines) and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been developed. Knowledge-based methods that make use of the WordNet computational lexicon have also been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve the problem and none exploit inference over ontologies and the use of metadata from publications. This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches for word sense disambiguation that use ontologies and metadata. The "Closest Sense" method assumes that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring terms in the document to one of these senses. The "Term Cooc" method defines a log-odds ratio for co-occurring terms including inferred co-occurrences. The "MetaData" approach trains a classifier on metadata; it does not require any ontology, but requires training data, which the other methods do not. These approaches are compared to each other when applied to a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach achieves on average 80% success rate. Furthermore, the thesis showcases applications ranging from ontology design to semantic search where WSD is important.
65

GoPubMed: Ontology-based literature search for the life sciences

Doms, Andreas 06 January 2009 (has links)
Background: Most of our biomedical knowledge is only accessible through texts. The biomedical literature grows exponentially and PubMed comprises over 18.000.000 literature abstracts. Recently much effort has been put into the creation of biomedical ontologies which capture biomedical facts. The exploitation of ontologies to explore the scientific literature is a new area of research. Motivation: When people search, they have questions in mind. Answering questions in a domain requires the knowledge of the terminology of that domain. Classical search engines do not provide background knowledge for the presentation of search results. Ontology annotated structured databases allow for data-mining. The hypothesis is that ontology annotated literature databases allow for text-mining. The central problem is to associate scientific publications with ontological concepts. This is a prerequisite for ontology-based literature search. The question then is how to answer biomedical questions using ontologies and a literature corpus. Finally the task is to automate bibliometric analyses on an corpus of scientific publications. Approach: Recent joint efforts on automatically extracting information from free text showed that the applied methods are complementary. The idea is to employ the rich terminological and relational information stored in biomedical ontologies to markup biomedical text documents. Based on established semantic links between documents and ontology concepts the goal is to answer biomedical question on a corpus of documents. The entirely annotated literature corpus allows for the first time to automatically generate bibliometric analyses for ontological concepts, authors and institutions. Results: This work includes a novel annotation framework for free texts with ontological concepts. The framework allows to generate recognition patterns rules from the terminological and relational information in an ontology. Maximum entropy models can be trained to distinguish the meaning of ambiguous concept labels. The framework was used to develop a annotation pipeline for PubMed abstracts with 27,863 Gene Ontology concepts. The evaluation of the recognition performance yielded a precision of 79.9% and a recall of 72.7% improving the previously used algorithm by 25,7% f-measure. The evaluation was done on a manually created (by the original authors) curation corpus of 689 PubMed abstracts with 18,356 curations of concepts. Methods to reason over large amounts of documents with ontologies were developed. The ability to answer questions with the online system was shown on a set of biomedical question of the TREC Genomics Track 2006 benchmark. This work includes the first ontology-based, large scale, online available, up-to-date bibliometric analysis for topics in molecular biology represented by GO concepts. The automatic bibliometric analysis is in line with existing, but often out-dated, manual analyses. Outlook: A number of promising continuations starting from this work have been spun off. A freely available online search engine has a growing user community. A spin-off company was funded by the High-Tech Gründerfonds which commercializes the new ontology-based search paradigm. Several off-springs of GoPubMed including GoWeb (general web search), Go3R (search in replacement, reduction, refinement methods for animal experiments), GoGene (search in gene/protein databases) are developed.
66

Plant Carnivory and the Evolution of Novelty in <i>Sarracenia alata</i>

Wheeler, Gregory Lawrence 07 November 2018 (has links)
No description available.
67

Evolution von ontologiebasierten Mappings in den Lebenswissenschaften / Evolution of ontology-based mappings in the life sciences

Groß, Anika 19 March 2014 (has links) (PDF)
Im Bereich der Lebenswissenschaften steht eine große und wachsende Menge heterogener Datenquellen zur Verfügung, welche häufig in quellübergreifenden Analysen und Auswertungen miteinander kombiniert werden. Um eine einheitliche und strukturierte Erfassung von Wissen sowie einen formalen Austausch zwischen verschiedenen Applikationen zu erleichtern, kommen Ontologien und andere strukturierte Vokabulare zum Einsatz. Sie finden Anwendung in verschiedenen Domänen wie der Molekularbiologie oder Chemie und dienen zumeist der Annotation realer Objekte wie z.B. Gene oder Literaturquellen. Unterschiedliche Ontologien enthalten jedoch teilweise überlappendes Wissen, so dass die Bestimmung einer Abbildung (Ontologiemapping) zwischen ihnen notwendig ist. Oft ist eine manuelle Mappingerstellung zwischen großen Ontologien kaum möglich, weshalb typischerweise automatische Verfahren zu deren Abgleich (Matching) eingesetzt werden. Aufgrund neuer Forschungserkenntnisse und Nutzeranforderungen verändern sich die Ontologien kontinuierlich weiter. Die Evolution der Ontologien hat wiederum Auswirkungen auf abhängige Daten wie beispielsweise Annotations- und Ontologiemappings, welche entsprechend aktualisiert werden müssen. Im Rahmen dieser Arbeit werden neue Methoden und Algorithmen zum Umgang mit der Evolution ontologie-basierter Mappings entwickelt. Dabei wird die generische Infrastruktur GOMMA zur Verwaltung und Analyse der Evolution von Ontologien und Mappings genutzt und erweitert. Zunächst wurde eine vergleichende Analyse der Evolution von Ontologiemappings für drei Subdomänen der Lebenswissenschaften durchgeführt. Ontologien sowie Mappings unterliegen teilweise starken Änderungen, wobei die Evolutionsintensität von der untersuchten Domäne abhängt. Insgesamt zeigt sich ein deutlicher Einfluss von Ontologieänderungen auf Ontologiemappings. Dementsprechend können bestehende Mappings infolge der Weiterentwicklung von Ontologien ungültig werden, so dass sie auf aktuelle Ontologieversionen migriert werden müssen. Dabei sollte eine aufwendige Neubestimmung der Mappings vermieden werden. In dieser Arbeit werden zwei generische Algorithmen zur (semi-) automatischen Adaptierung von Ontologiemappings eingeführt. Ein Ansatz basiert auf der Komposition von Ontologiemappings, wohingegen der andere Ansatz eine individuelle Behandlung von Ontologieänderungen zur Adaptierung der Mappings erlaubt. Beide Verfahren ermöglichen die Wiederverwendung unbeeinflusster, bereits bestätigter Mappingteile und adaptieren nur die von Änderungen betroffenen Bereiche der Mappings. Eine Evaluierung für sehr große, biomedizinische Ontologien und Mappings zeigt, dass beide Verfahren qualitativ hochwertige Ergebnisse produzieren. Ähnlich zu Ontologiemappings werden auch ontologiebasierte Annotationsmappings durch Ontologieänderungen beeinflusst. Die Arbeit stellt einen generischen Ansatz zur Bewertung der Qualität von Annotationsmappings auf Basis ihrer Evolution vor. Verschiedene Qualitätsmaße erlauben die Identifikation glaubwürdiger Annotationen beispielsweise anhand ihrer Stabilität oder Herkunftsinformationen. Eine umfassende Analyse großer Annotationsdatenquellen zeigt zahlreiche Instabilitäten z.B. aufgrund temporärer Annotationslöschungen. Dementsprechend stellt sich die Frage, inwieweit die Datenevolution zu einer Veränderung von abhängigen Analyseergebnissen führen kann. Dazu werden die Auswirkungen der Ontologie- und Annotationsevolution auf sogenannte funktionale Analysen großer biologischer Datensätze untersucht. Eine Evaluierung anhand verschiedener Stabilitätsmaße erlaubt die Bewertung der Änderungsintensität der Ergebnisse und gibt Aufschluss, inwieweit Nutzer mit einer signifikanten Veränderung ihrer Ergebnisse rechnen müssen. Darüber hinaus wird GOMMA um effiziente Verfahren für das Matching sehr großer Ontologien erweitert. Diese werden u.a. für den Abgleich neuer Konzepte während der Adaptierung von Ontologiemappings benötigt. Viele der existierenden Match-Systeme skalieren nicht für das Matching besonders großer Ontologien wie sie im Bereich der Lebenswissenschaften auftreten. Ein effizienter, kompositionsbasierter Ansatz gleicht Ontologien indirekt ab, indem existierende Mappings zu Mediatorontologien wiederverwendet und miteinander kombiniert werden. Mediatorontologien enthalten wertvolles Hintergrundwissen, so dass sich die Mappingqualität im Vergleich zu einem direkten Matching verbessern kann. Zudem werden generelle Strategien für das parallele Ontologie-Matching unter Verwendung mehrerer Rechenknoten vorgestellt. Eine größenbasierte Partitionierung der Eingabeontologien verspricht eine gute Lastbalancierung und Skalierbarkeit, da kleinere Teilaufgaben des Matchings parallel verarbeitet werden können. Die Evaluierung im Rahmen der Ontology Alignment Evaluation Initiative (OAEI) vergleicht GOMMA und andere Systeme für das Matching von Ontologien in verschiedenen Domänen. GOMMA kann u.a. durch Anwendung des parallelen und kompositionsbasierten Matchings sehr gute Ergebnisse bezüglich der Effektivität und Effizienz des Matchings, insbesondere für Ontologien aus dem Bereich der Lebenswissenschaften, erreichen. / In the life sciences, there is an increasing number of heterogeneous data sources that need to be integrated and combined in comprehensive analysis tasks. Often ontologies and other structured vocabularies are used to provide a formal representation of knowledge and to facilitate data exchange between different applications. Ontologies are used in different domains like molecular biology or chemistry. One of their most important applications is the annotation of real-world objects like genes or publications. Since different ontologies can contain overlapping knowledge it is necessary to determine mappings between them (ontology mappings). A manual mapping creation can be very time-consuming or even infeasible such that (semi-) automatic ontology matching methods are typically applied. Ontologies are not static but underlie continuous modifications due to new research insights and changing user requirements. The evolution of ontologies can have impact on dependent data like annotation or ontology mappings. This thesis presents novel methods and algorithms to deal with the evolution of ontology-based mappings. Thereby the generic infrastructure GOMMA is used and extended to manage and analyze the evolution of ontologies and mappings. First, a comparative evolution analysis for ontologies and mappings from three life science domains shows heavy changes in ontologies and mappings as well as an impact of ontology changes on the mappings. Hence, existing ontology mappings can become invalid and need to be migrated to current ontology versions. Thereby an expensive redetermination of the mappings should be avoided. This thesis introduces two generic algorithms to (semi-) automatically adapt ontology mappings: (1) a composition-based adaptation relies on the principle of mapping composition, and (2) a diff-based adaptation algorithm allows for individually handling change operations to update mappings. Both approaches reuse unaffected mapping parts, and adapt only affected parts of the mappings. An evaluation for very large biomedical ontologies and mappings shows that both approaches produce ontology mappings of high quality. Similarly, ontology changes may also affect ontology-based annotation mappings. The thesis introduces a generic evaluation approach to assess the quality of annotation mappings based on their evolution. Different quality measures allow for the identification of reliable annotations, e.g., based on their stability or provenance information. A comprehensive analysis of large annotation data sources shows numerous instabilities, e.g., due to the temporary absence of annotations. Such modifications may influence results of dependent applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. The question arises to what degree ontology and annotation changes may affect such analyses. Based on different stability measures the evaluation assesses change intensities of application results and gives insights whether users need to expect significant changes of their analysis results. Moreover, GOMMA is extended by large-scale ontology matching techniques. Such techniques are useful, a.o., to match new concepts during ontology mapping adaptation. Many existing match systems do not scale for aligning very large ontologies, e.g., from the life science domain. One efficient composition-based approach indirectly computes ontology mappings by reusing and combining existing mappings to intermediate ontologies. Intermediate ontologies can contain useful background knowledge such that the mapping quality can be improved compared to a direct match approach. Moreover, the thesis introduces general strategies for matching ontologies in parallel using several computing nodes. A size-based partitioning of the input ontologies enables good load balancing and scalability since smaller match tasks can be processed in parallel. The evaluation of the Ontology Alignment Evaluation Initiative (OAEI) compares GOMMA and other systems in terms of matching ontologies from different domains. Using the parallel and composition-based matching, GOMMA can achieve very good results w.r.t. efficiency and effectiveness, especially for ontologies from the life science domain.
68

Evolution von ontologiebasierten Mappings in den Lebenswissenschaften

Groß, Anika 05 March 2014 (has links)
Im Bereich der Lebenswissenschaften steht eine große und wachsende Menge heterogener Datenquellen zur Verfügung, welche häufig in quellübergreifenden Analysen und Auswertungen miteinander kombiniert werden. Um eine einheitliche und strukturierte Erfassung von Wissen sowie einen formalen Austausch zwischen verschiedenen Applikationen zu erleichtern, kommen Ontologien und andere strukturierte Vokabulare zum Einsatz. Sie finden Anwendung in verschiedenen Domänen wie der Molekularbiologie oder Chemie und dienen zumeist der Annotation realer Objekte wie z.B. Gene oder Literaturquellen. Unterschiedliche Ontologien enthalten jedoch teilweise überlappendes Wissen, so dass die Bestimmung einer Abbildung (Ontologiemapping) zwischen ihnen notwendig ist. Oft ist eine manuelle Mappingerstellung zwischen großen Ontologien kaum möglich, weshalb typischerweise automatische Verfahren zu deren Abgleich (Matching) eingesetzt werden. Aufgrund neuer Forschungserkenntnisse und Nutzeranforderungen verändern sich die Ontologien kontinuierlich weiter. Die Evolution der Ontologien hat wiederum Auswirkungen auf abhängige Daten wie beispielsweise Annotations- und Ontologiemappings, welche entsprechend aktualisiert werden müssen. Im Rahmen dieser Arbeit werden neue Methoden und Algorithmen zum Umgang mit der Evolution ontologie-basierter Mappings entwickelt. Dabei wird die generische Infrastruktur GOMMA zur Verwaltung und Analyse der Evolution von Ontologien und Mappings genutzt und erweitert. Zunächst wurde eine vergleichende Analyse der Evolution von Ontologiemappings für drei Subdomänen der Lebenswissenschaften durchgeführt. Ontologien sowie Mappings unterliegen teilweise starken Änderungen, wobei die Evolutionsintensität von der untersuchten Domäne abhängt. Insgesamt zeigt sich ein deutlicher Einfluss von Ontologieänderungen auf Ontologiemappings. Dementsprechend können bestehende Mappings infolge der Weiterentwicklung von Ontologien ungültig werden, so dass sie auf aktuelle Ontologieversionen migriert werden müssen. Dabei sollte eine aufwendige Neubestimmung der Mappings vermieden werden. In dieser Arbeit werden zwei generische Algorithmen zur (semi-) automatischen Adaptierung von Ontologiemappings eingeführt. Ein Ansatz basiert auf der Komposition von Ontologiemappings, wohingegen der andere Ansatz eine individuelle Behandlung von Ontologieänderungen zur Adaptierung der Mappings erlaubt. Beide Verfahren ermöglichen die Wiederverwendung unbeeinflusster, bereits bestätigter Mappingteile und adaptieren nur die von Änderungen betroffenen Bereiche der Mappings. Eine Evaluierung für sehr große, biomedizinische Ontologien und Mappings zeigt, dass beide Verfahren qualitativ hochwertige Ergebnisse produzieren. Ähnlich zu Ontologiemappings werden auch ontologiebasierte Annotationsmappings durch Ontologieänderungen beeinflusst. Die Arbeit stellt einen generischen Ansatz zur Bewertung der Qualität von Annotationsmappings auf Basis ihrer Evolution vor. Verschiedene Qualitätsmaße erlauben die Identifikation glaubwürdiger Annotationen beispielsweise anhand ihrer Stabilität oder Herkunftsinformationen. Eine umfassende Analyse großer Annotationsdatenquellen zeigt zahlreiche Instabilitäten z.B. aufgrund temporärer Annotationslöschungen. Dementsprechend stellt sich die Frage, inwieweit die Datenevolution zu einer Veränderung von abhängigen Analyseergebnissen führen kann. Dazu werden die Auswirkungen der Ontologie- und Annotationsevolution auf sogenannte funktionale Analysen großer biologischer Datensätze untersucht. Eine Evaluierung anhand verschiedener Stabilitätsmaße erlaubt die Bewertung der Änderungsintensität der Ergebnisse und gibt Aufschluss, inwieweit Nutzer mit einer signifikanten Veränderung ihrer Ergebnisse rechnen müssen. Darüber hinaus wird GOMMA um effiziente Verfahren für das Matching sehr großer Ontologien erweitert. Diese werden u.a. für den Abgleich neuer Konzepte während der Adaptierung von Ontologiemappings benötigt. Viele der existierenden Match-Systeme skalieren nicht für das Matching besonders großer Ontologien wie sie im Bereich der Lebenswissenschaften auftreten. Ein effizienter, kompositionsbasierter Ansatz gleicht Ontologien indirekt ab, indem existierende Mappings zu Mediatorontologien wiederverwendet und miteinander kombiniert werden. Mediatorontologien enthalten wertvolles Hintergrundwissen, so dass sich die Mappingqualität im Vergleich zu einem direkten Matching verbessern kann. Zudem werden generelle Strategien für das parallele Ontologie-Matching unter Verwendung mehrerer Rechenknoten vorgestellt. Eine größenbasierte Partitionierung der Eingabeontologien verspricht eine gute Lastbalancierung und Skalierbarkeit, da kleinere Teilaufgaben des Matchings parallel verarbeitet werden können. Die Evaluierung im Rahmen der Ontology Alignment Evaluation Initiative (OAEI) vergleicht GOMMA und andere Systeme für das Matching von Ontologien in verschiedenen Domänen. GOMMA kann u.a. durch Anwendung des parallelen und kompositionsbasierten Matchings sehr gute Ergebnisse bezüglich der Effektivität und Effizienz des Matchings, insbesondere für Ontologien aus dem Bereich der Lebenswissenschaften, erreichen. / In the life sciences, there is an increasing number of heterogeneous data sources that need to be integrated and combined in comprehensive analysis tasks. Often ontologies and other structured vocabularies are used to provide a formal representation of knowledge and to facilitate data exchange between different applications. Ontologies are used in different domains like molecular biology or chemistry. One of their most important applications is the annotation of real-world objects like genes or publications. Since different ontologies can contain overlapping knowledge it is necessary to determine mappings between them (ontology mappings). A manual mapping creation can be very time-consuming or even infeasible such that (semi-) automatic ontology matching methods are typically applied. Ontologies are not static but underlie continuous modifications due to new research insights and changing user requirements. The evolution of ontologies can have impact on dependent data like annotation or ontology mappings. This thesis presents novel methods and algorithms to deal with the evolution of ontology-based mappings. Thereby the generic infrastructure GOMMA is used and extended to manage and analyze the evolution of ontologies and mappings. First, a comparative evolution analysis for ontologies and mappings from three life science domains shows heavy changes in ontologies and mappings as well as an impact of ontology changes on the mappings. Hence, existing ontology mappings can become invalid and need to be migrated to current ontology versions. Thereby an expensive redetermination of the mappings should be avoided. This thesis introduces two generic algorithms to (semi-) automatically adapt ontology mappings: (1) a composition-based adaptation relies on the principle of mapping composition, and (2) a diff-based adaptation algorithm allows for individually handling change operations to update mappings. Both approaches reuse unaffected mapping parts, and adapt only affected parts of the mappings. An evaluation for very large biomedical ontologies and mappings shows that both approaches produce ontology mappings of high quality. Similarly, ontology changes may also affect ontology-based annotation mappings. The thesis introduces a generic evaluation approach to assess the quality of annotation mappings based on their evolution. Different quality measures allow for the identification of reliable annotations, e.g., based on their stability or provenance information. A comprehensive analysis of large annotation data sources shows numerous instabilities, e.g., due to the temporary absence of annotations. Such modifications may influence results of dependent applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. The question arises to what degree ontology and annotation changes may affect such analyses. Based on different stability measures the evaluation assesses change intensities of application results and gives insights whether users need to expect significant changes of their analysis results. Moreover, GOMMA is extended by large-scale ontology matching techniques. Such techniques are useful, a.o., to match new concepts during ontology mapping adaptation. Many existing match systems do not scale for aligning very large ontologies, e.g., from the life science domain. One efficient composition-based approach indirectly computes ontology mappings by reusing and combining existing mappings to intermediate ontologies. Intermediate ontologies can contain useful background knowledge such that the mapping quality can be improved compared to a direct match approach. Moreover, the thesis introduces general strategies for matching ontologies in parallel using several computing nodes. A size-based partitioning of the input ontologies enables good load balancing and scalability since smaller match tasks can be processed in parallel. The evaluation of the Ontology Alignment Evaluation Initiative (OAEI) compares GOMMA and other systems in terms of matching ontologies from different domains. Using the parallel and composition-based matching, GOMMA can achieve very good results w.r.t. efficiency and effectiveness, especially for ontologies from the life science domain.
69

Modélisation des bi-grappes et sélection des variables pour des données de grande dimension : application aux données d’expression génétique

Chekouo Tekougang, Thierry 08 1900 (has links)
Les simulations ont été implémentées avec le programme Java. / Le regroupement des données est une méthode classique pour analyser les matrices d'expression génétiques. Lorsque le regroupement est appliqué sur les lignes (gènes), chaque colonne (conditions expérimentales) appartient à toutes les grappes obtenues. Cependant, il est souvent observé que des sous-groupes de gènes sont seulement co-régulés (i.e. avec les expressions similaires) sous un sous-groupe de conditions. Ainsi, les techniques de bi-regroupement ont été proposées pour révéler ces sous-matrices des gènes et conditions. Un bi-regroupement est donc un regroupement simultané des lignes et des colonnes d'une matrice de données. La plupart des algorithmes de bi-regroupement proposés dans la littérature n'ont pas de fondement statistique. Cependant, il est intéressant de porter une attention sur les modèles sous-jacents à ces algorithmes et de développer des modèles statistiques permettant d'obtenir des bi-grappes significatives. Dans cette thèse, nous faisons une revue de littérature sur les algorithmes qui semblent être les plus populaires. Nous groupons ces algorithmes en fonction du type d'homogénéité dans la bi-grappe et du type d'imbrication que l'on peut rencontrer. Nous mettons en lumière les modèles statistiques qui peuvent justifier ces algorithmes. Il s'avère que certaines techniques peuvent être justifiées dans un contexte bayésien. Nous développons une extension du modèle à carreaux (plaid) de bi-regroupement dans un cadre bayésien et nous proposons une mesure de la complexité du bi-regroupement. Le critère d'information de déviance (DIC) est utilisé pour choisir le nombre de bi-grappes. Les études sur les données d'expression génétiques et les données simulées ont produit des résultats satisfaisants. À notre connaissance, les algorithmes de bi-regroupement supposent que les gènes et les conditions expérimentales sont des entités indépendantes. Ces algorithmes n'incorporent pas de l'information biologique a priori que l'on peut avoir sur les gènes et les conditions. Nous introduisons un nouveau modèle bayésien à carreaux pour les données d'expression génétique qui intègre les connaissances biologiques et prend en compte l'interaction par paires entre les gènes et entre les conditions à travers un champ de Gibbs. La dépendance entre ces entités est faite à partir des graphes relationnels, l'un pour les gènes et l'autre pour les conditions. Le graphe des gènes et celui des conditions sont construits par les k-voisins les plus proches et permet de définir la distribution a priori des étiquettes comme des modèles auto-logistiques. Les similarités des gènes se calculent en utilisant l'ontologie des gènes (GO). L'estimation est faite par une procédure hybride qui mixe les MCMC avec une variante de l'algorithme de Wang-Landau. Les expériences sur les données simulées et réelles montrent la performance de notre approche. Il est à noter qu'il peut exister plusieurs variables de bruit dans les données à micro-puces, c'est-à-dire des variables qui ne sont pas capables de discriminer les groupes. Ces variables peuvent masquer la vraie structure du regroupement. Nous proposons un modèle inspiré de celui à carreaux qui, simultanément retrouve la vraie structure de regroupement et identifie les variables discriminantes. Ce problème est traité en utilisant un vecteur latent binaire, donc l'estimation est obtenue via l'algorithme EM de Monte Carlo. L'importance échantillonnale est utilisée pour réduire le coût computationnel de l'échantillonnage Monte Carlo à chaque étape de l'algorithme EM. Nous proposons un nouveau modèle pour résoudre le problème. Il suppose une superposition additive des grappes, c'est-à-dire qu'une observation peut être expliquée par plus d'une seule grappe. Les exemples numériques démontrent l'utilité de nos méthodes en terme de sélection de variables et de regroupement. / Clustering is a classical method to analyse gene expression data. When applied to the rows (e.g. genes), each column belongs to all clusters. However, it is often observed that the genes of a subset of genes are co-regulated and co-expressed in a subset of conditions, but behave almost independently under other conditions. For these reasons, biclustering techniques have been proposed to look for sub-matrices of a data matrix. Biclustering is a simultaneous clustering of rows and columns of a data matrix. Most of the biclustering algorithms proposed in the literature have no statistical foundation. It is interesting to pay attention to the underlying models of these algorithms and develop statistical models to obtain significant biclusters. In this thesis, we review some biclustering algorithms that seem to be most popular. We group these algorithms in accordance to the type of homogeneity in the bicluster and the type of overlapping that may be encountered. We shed light on statistical models that can justify these algorithms. It turns out that some techniques can be justified in a Bayesian framework. We develop an extension of the biclustering plaid model in a Bayesian framework and we propose a measure of complexity for biclustering. The deviance information criterion (DIC) is used to select the number of biclusters. Studies on gene expression data and simulated data give satisfactory results. To our knowledge, the biclustering algorithms assume that genes and experimental conditions are independent entities. These algorithms do not incorporate prior biological information that could be available on genes and conditions. We introduce a new Bayesian plaid model for gene expression data which integrates biological knowledge and takes into account the pairwise interactions between genes and between conditions via a Gibbs field. Dependence between these entities is made from relational graphs, one for genes and another for conditions. The graph of the genes and conditions is constructed by the k-nearest neighbors and allows to define a priori distribution of labels as auto-logistic models. The similarities of genes are calculated using gene ontology (GO). To estimate the parameters, we adopt a hybrid procedure that mixes MCMC with a variant of the Wang-Landau algorithm. Experiments on simulated and real data show the performance of our approach. It should be noted that there may be several variables of noise in microarray data. These variables may mask the true structure of the clustering. Inspired by the plaid model, we propose a model that simultaneously finds the true clustering structure and identifies discriminating variables. We propose a new model to solve the problem. It assumes that an observation can be explained by more than one cluster. This problem is addressed by using a binary latent vector, so the estimation is obtained via the Monte Carlo EM algorithm. Importance Sampling is used to reduce the computational cost of the Monte Carlo sampling at each step of the EM algorithm. Numerical examples demonstrate the usefulness of these methods in terms of variable selection and clustering.
70

Modélisation des bi-grappes et sélection des variables pour des données de grande dimension : application aux données d’expression génétique

Chekouo Tekougang, Thierry 08 1900 (has links)
Le regroupement des données est une méthode classique pour analyser les matrices d'expression génétiques. Lorsque le regroupement est appliqué sur les lignes (gènes), chaque colonne (conditions expérimentales) appartient à toutes les grappes obtenues. Cependant, il est souvent observé que des sous-groupes de gènes sont seulement co-régulés (i.e. avec les expressions similaires) sous un sous-groupe de conditions. Ainsi, les techniques de bi-regroupement ont été proposées pour révéler ces sous-matrices des gènes et conditions. Un bi-regroupement est donc un regroupement simultané des lignes et des colonnes d'une matrice de données. La plupart des algorithmes de bi-regroupement proposés dans la littérature n'ont pas de fondement statistique. Cependant, il est intéressant de porter une attention sur les modèles sous-jacents à ces algorithmes et de développer des modèles statistiques permettant d'obtenir des bi-grappes significatives. Dans cette thèse, nous faisons une revue de littérature sur les algorithmes qui semblent être les plus populaires. Nous groupons ces algorithmes en fonction du type d'homogénéité dans la bi-grappe et du type d'imbrication que l'on peut rencontrer. Nous mettons en lumière les modèles statistiques qui peuvent justifier ces algorithmes. Il s'avère que certaines techniques peuvent être justifiées dans un contexte bayésien. Nous développons une extension du modèle à carreaux (plaid) de bi-regroupement dans un cadre bayésien et nous proposons une mesure de la complexité du bi-regroupement. Le critère d'information de déviance (DIC) est utilisé pour choisir le nombre de bi-grappes. Les études sur les données d'expression génétiques et les données simulées ont produit des résultats satisfaisants. À notre connaissance, les algorithmes de bi-regroupement supposent que les gènes et les conditions expérimentales sont des entités indépendantes. Ces algorithmes n'incorporent pas de l'information biologique a priori que l'on peut avoir sur les gènes et les conditions. Nous introduisons un nouveau modèle bayésien à carreaux pour les données d'expression génétique qui intègre les connaissances biologiques et prend en compte l'interaction par paires entre les gènes et entre les conditions à travers un champ de Gibbs. La dépendance entre ces entités est faite à partir des graphes relationnels, l'un pour les gènes et l'autre pour les conditions. Le graphe des gènes et celui des conditions sont construits par les k-voisins les plus proches et permet de définir la distribution a priori des étiquettes comme des modèles auto-logistiques. Les similarités des gènes se calculent en utilisant l'ontologie des gènes (GO). L'estimation est faite par une procédure hybride qui mixe les MCMC avec une variante de l'algorithme de Wang-Landau. Les expériences sur les données simulées et réelles montrent la performance de notre approche. Il est à noter qu'il peut exister plusieurs variables de bruit dans les données à micro-puces, c'est-à-dire des variables qui ne sont pas capables de discriminer les groupes. Ces variables peuvent masquer la vraie structure du regroupement. Nous proposons un modèle inspiré de celui à carreaux qui, simultanément retrouve la vraie structure de regroupement et identifie les variables discriminantes. Ce problème est traité en utilisant un vecteur latent binaire, donc l'estimation est obtenue via l'algorithme EM de Monte Carlo. L'importance échantillonnale est utilisée pour réduire le coût computationnel de l'échantillonnage Monte Carlo à chaque étape de l'algorithme EM. Nous proposons un nouveau modèle pour résoudre le problème. Il suppose une superposition additive des grappes, c'est-à-dire qu'une observation peut être expliquée par plus d'une seule grappe. Les exemples numériques démontrent l'utilité de nos méthodes en terme de sélection de variables et de regroupement. / Clustering is a classical method to analyse gene expression data. When applied to the rows (e.g. genes), each column belongs to all clusters. However, it is often observed that the genes of a subset of genes are co-regulated and co-expressed in a subset of conditions, but behave almost independently under other conditions. For these reasons, biclustering techniques have been proposed to look for sub-matrices of a data matrix. Biclustering is a simultaneous clustering of rows and columns of a data matrix. Most of the biclustering algorithms proposed in the literature have no statistical foundation. It is interesting to pay attention to the underlying models of these algorithms and develop statistical models to obtain significant biclusters. In this thesis, we review some biclustering algorithms that seem to be most popular. We group these algorithms in accordance to the type of homogeneity in the bicluster and the type of overlapping that may be encountered. We shed light on statistical models that can justify these algorithms. It turns out that some techniques can be justified in a Bayesian framework. We develop an extension of the biclustering plaid model in a Bayesian framework and we propose a measure of complexity for biclustering. The deviance information criterion (DIC) is used to select the number of biclusters. Studies on gene expression data and simulated data give satisfactory results. To our knowledge, the biclustering algorithms assume that genes and experimental conditions are independent entities. These algorithms do not incorporate prior biological information that could be available on genes and conditions. We introduce a new Bayesian plaid model for gene expression data which integrates biological knowledge and takes into account the pairwise interactions between genes and between conditions via a Gibbs field. Dependence between these entities is made from relational graphs, one for genes and another for conditions. The graph of the genes and conditions is constructed by the k-nearest neighbors and allows to define a priori distribution of labels as auto-logistic models. The similarities of genes are calculated using gene ontology (GO). To estimate the parameters, we adopt a hybrid procedure that mixes MCMC with a variant of the Wang-Landau algorithm. Experiments on simulated and real data show the performance of our approach. It should be noted that there may be several variables of noise in microarray data. These variables may mask the true structure of the clustering. Inspired by the plaid model, we propose a model that simultaneously finds the true clustering structure and identifies discriminating variables. We propose a new model to solve the problem. It assumes that an observation can be explained by more than one cluster. This problem is addressed by using a binary latent vector, so the estimation is obtained via the Monte Carlo EM algorithm. Importance Sampling is used to reduce the computational cost of the Monte Carlo sampling at each step of the EM algorithm. Numerical examples demonstrate the usefulness of these methods in terms of variable selection and clustering. / Les simulations ont été implémentées avec le programme Java.

Page generated in 0.0404 seconds