• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 21
  • 19
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 126
  • 39
  • 26
  • 21
  • 21
  • 20
  • 17
  • 16
  • 16
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

System Identification Methods For Reverse Engineering Gene Regulatory Networks

WANG, ZHEN 25 October 2010 (has links)
With the advent of high throughput measurement technologies, large scale gene expression data are available for analysis. Various computational methods have been introduced to analyze and predict meaningful molecular interactions from gene expression data. Such patterns can provide an understanding of the regulatory mechanisms in the cells. In the past, system identification algorithms have been extensively developed for engineering systems. These methods capture the dynamic input/output relationship of a system, provide a deterministic model of its function, and have reasonable computational requirements. In this work, two system identification methods are applied for reverse engineering of gene regulatory networks. The first method is based on an orthogonal search; it selects terms from a predefined set of gene expression profiles to best fit the expression levels of a given output gene. The second method consists of a few cascades, each of which includes a dynamic component and a static component. Multiple cascades are added in a parallel to reduce the difference of the estimated expression profiles with the actual ones. Gene regulatory networks can be constructed by defining the selected inputs as the regulators of the output. To assess the performance of the approaches, a temporal synthetic dataset is developed. Methods are then applied to this dataset as well as the Brainsim dataset, a popular simulated temporal gene expression data. Furthermore, the methods are also applied to a biological dataset in yeast Saccharomyces Cerevisiae. This dataset includes 14 cell-cycle regulated genes; their known cell cycle pathway is used as the target network structure, and the criteria sensitivity, precision, and specificity are calculated to evaluate the inferred networks through these two methods. Resulting networks are also compared with two previous studies in the literature on the same dataset. / Thesis (Master, Computing) -- Queen's University, 2010-10-18 20:47:36.458
12

Learning Gene Regulatory Networks Computationally from Gene Expression Data Using Weighted Consensus

Fujii, Chisato 16 April 2015 (has links)
Gene regulatory networks analyze the relationships between genes allowing us to un- derstand the gene regulatory interactions in systems biology. Gene expression data from the microarray experiments is used to obtain the gene regulatory networks. How- ever, the microarray data is discrete, noisy and non-linear which makes learning the networks a challenging problem and existing gene network inference methods do not give consistent results. Current state-of-the-art study uses the average-ranking-based consensus method to combine and average the ranked predictions from individual methods. However each individual method has an equal contribution to the consen- sus prediction. We have developed a linear programming-based consensus approach which uses learned weights from linear programming among individual methods such that the methods have di↵erent weights depending on their performance. Our result reveals that assigning di↵erent weights to individual methods rather than giving them equal weights improves the performance of the consensus. The linear programming- based consensus method is evaluated and it had the best performance on in silico and Saccharomyces cerevisiae networks, and the second best on the Escherichia coli network outperformed by Inferelator Pipeline method which gives inconsistent results across a wide range of microarray data sets.
13

A Stochastic Framework to Model Extrinsic Noise in Gene Regulatory Networks

Hofmann, Ariane Leoni 05 September 2012 (has links)
Stochastic modeling to represent intrinsic and extrinsic noise is an important challenge in molecular systems biology. There are numerous ways to model intrinsic noise. One framework for intrinsic noise in gene regulatory networks was recently proposed within the discrete setting. In contrast, extrinsic perturbations were rarely modeled due to the complex mechanisms that contribute to its emergence. Here a discrete framework to model extrinsic noise is proposed. The interacting species of the model are represented by discrete variables and are perturbed to represent extrinsic noise. In particular, they are subject to a discretized lognormal distribution. Additionally, a delay is imposed on the update with a certain probability. These two perturbations represent global extrinsic noise and pathway-specic extrinsic noise. It leads to large variations in the concentration of proteins, which is consistent with an existing continuous way of modeling extrinsic fluctuations. The framework is applied to three different published discrete models: the cell fate of lambda phage infection of bacteria, the lactose utilization system in E. coli, and a signaling network in melanoma cells. The framework captures factors that signicantly contribute to the random decision between lysis and lysogeny as well as explains the bistable switch in the model of the lac operon. Finally, a feed-forward loop analysis is conducted by measuring and comparing the noise level in the target protein of feed-forward loops. This analysis reveals the ability of certain feed-forward loops to attenuate or amplify fluctuations, dependent upon various levels of noise. In conclusion, this thesis aims to resolve the question of how the extrinsic noise can be modeled and how biological systems are able to maintain functionality in the wake of such large variations. / Master of Science
14

Computational models for efficient reconstruction of gene regulatory network. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Zhang, Qing. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 129-148). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
15

Inferring Gene Regulatory Networks from Expression Data using Ensemble Methods

Slawek, Janusz 01 May 2014 (has links)
High-throughput technologies for measuring gene expression made inferring of the genome-wide Gene Regulatory Networks an active field of research. Reverse-engineering of systems of transcriptional regulations became an important challenge in molecular and computational biology. Because such systems model dependencies between genes, they are important in understanding of cell behavior, and can potentially turn observed expression data into the new biological knowledge and practical applications. In this dissertation we introduce a set of algorithms, which infer networks of transcriptional regulations from variety of expression profiles with superior accuracy compared to the state-of-the-art techniques. The proposed methods make use of ensembles of trees, which became popular in many scientific fields, including genetics and bioinformatics. However, originally they were motivated from the perspective of classification, regression, and feature selection theory. In this study we exploit their relative variable importance measure as an indication of the presence or absence of a regulatory interaction between genes. We further analyze their predictions on a set of the universally recognized benchmark expression data sets, and achieve favorable results in compare with the state-of-the-art algorithms.
16

Systematically Mapping the Epigenetic Context Dependence of Transcription Factor Binding

Kribelbauer, Judith Franziska January 2018 (has links)
At the core of gene regulatory networks are transcription factors (TFs) that recognize specific DNA sequences and target distinct gene sets. Characterizing the DNA binding specificity of all TFs is a prerequisite for understanding global gene regulatory logic, which in recent years has resulted in the development of high-throughput methods that probe TF specificity in vitro and are now routinely used to inform or interpret in vivo studies. Despite the broad success of such methods, several challenges remain, two of which are addressed in this thesis. Genomic DNA can harbor different epigenetic marks that have the potential to alter TF binding, the most prominent being CpG methylation. Given the vast number of modified CpGs in the human genome and an increasing body of literature suggesting a link between epigenetic changes and genome instability, or the onset of disease such as cancer, methods that can characterize the sensitivity of TFs to DNA methylation are needed to mechanistically interpret its impact on gene expression. We developed a high-throughput in vitro method (EpiSELEX-seq) that probes TF binding to unmodified and modified DNA sequences in competition, resulting in high-resolution maps of TF binding preferences. We found that methylation sensitivity can vary between TFs of the the same structural family and is dependent on the position of the 5mCpG within the TF binding site. The importance of our in vitro profiling of methylation sensitivity is demonstrated by the preference of human p53 tetramers for 5mCpGs within its binding site core. This previously unknown, stabilizing effect is also detectable in p53 ChIP-seq data when comparing methylated and unmethylated sites genome-wide. A second impediment to predicting TF binding is our limited understanding of i) how cooperative participation of a TF in different complexes can alter their binding preference, and ii) how the detailed shape of DNA aids in creating a substrate for adaptive multi-TF binding. To address these questions in detail, we studied the in vitro binding preferences of three D. melanogaster homeodomain TFs: Homothorax (Hth), Extradenticle(Exd) and one of the eight Hox proteins. In vivo, Hth occurs in two splice forms: with (HthFL) and without (HthHM) the DNA binding domain (DBD). HthHM-Exd itself is a Hox cofactor that has been shown to induce latent sequence specificity upon complex formation with Hox proteins. There are three possible complexes that can be formed, all potentially having specific target genes: HthHM-Exd-Hox, HthFL-Exd-Hox, and HthFL-Exd. We characterized the in vitro binding preferences of each of these by developing new computational approaches to analyze high-throughput SELEX-seq data. We found distinct orientation and spacing preference for HthFL-Exd-Hox, alternative recognition modes that depend on the affinity class a sequence falls into, and a strong preference for a narrow DNA minor grove near Exd's N-terminal DBD. Strikingly, this shape readout is crucial to stabilize the HthHM-Exd-Hox complex in the absence of a Hth DBD and can thus be used to distinguish HthHM from HthFL isoform binding. Mutating the amino acids responsible for the shape readout by Exd and reinserting the engineered protein into the fly genome allowed us to classify in vivo binding sites based on ChIP-seq signal comparison between “shape-mutant” and wild-type Exd. In summary, the research presented here has investigated TF binding preferences beyond sequence context by combining novel high-throughput experimental and computational methods. This interdisciplinary approach has enabled us to study binding preferences of TF complexes with respect to the epigenetic landscape of their cognate binding sites. Our novel mechanistic insights into DNA shape readout have provided a new avenue of exploiting guided protein engineering to probe how specific TFs interact with their co-factors in a cellular context, and how flanking genomic sequence helps determine which multi-TF complexes will form and which binding mode a complex adopts.
17

Spatio-temporal modelling of gene regulatory networks containing negative feedback loops

Sturrock, Marc January 2013 (has links)
No description available.
18

Integrative approaches to modelling and knowledge discovery of molecular interactions in bioinformatics

Jain, Vishal January 2008 (has links)
The core focus of this research lies in developing and using intelligent methods to solve biological problems and integrating the knowledge for understanding the complex gene regulatory phenomenon. We have developed an integrative framework and used it to: model molecular interactions from separate case studies on time-series gene expression microarray datasets, molecular sequences and structure data including the functional role of microRNAs; to extract knowledge; and to build reusable models for the central dogma theme. Knowledge was integrated with the use of ontology and it can be reused to facilitate new discoveries as demonstrated on one of our systems – the Brain Gene Ontology (BGO). The central dogma theme states that proteins are produced from the DNA (gene) via an intermediate transcript called RNA. Later these proteins play the role of enzymes to perform the checkpoints as a gene expression control. Also, according to the recently emerged paradigm, sometimes genes do not code for proteins but results in small molecules of microRNAs which in turn controls the gene regulation. The idea is that such a very complicated molecular biology process (central dogma) results in production of a wide variety of data that can be used by computer scientists for modelling and to enable discoveries. We have suggested that this range of data should actually be taken into account for analysis to understand the concept of gene regulation instead of just taking one source of data and applying some standard methods to reveal facts in the system biology. The problem is very complex and, currently, computational algorithms have not been really successful because either existing methods have certain problems or the proven results were obtained for only one domain of the central dogma of molecular biology, so there has always been a lack of knowledge integration. Proper maintenance of diverse sources of data, structures and, in particular, their adaptation to new knowledge is one of the most challenging problems and one of the crucial tasks towards the knowledge integration vision is the efficient encoding of human knowledge in ontologies. More specifically this work has contributed towards the development of novel computational and information science methods and we have promoted the vision of knowledge integration by developing brain gene ontology (BGO) system. With the integrative use of several bioinformatics methods, this research has indeed resulted in modelling of such knowledge that has not been revealed in system biology so far. There are many discoveries made during my study and some of the findings are briefly mentioned as follows: (1) in relation to leukaemia disease we have discovered a new gene “TCF-1” that interacts with the “telomerase” gene. (2) With respect to yeast cell cycle analysis, we hypothesize that exoglucanase gene “exg1” is now implicated to be tied with “MCB cluster regulation” and a “mannosidase” with “histone linked mannoses”. A new quantitative prediction is that the time delay of the interaction between two genes seems to be approximately 30 minutes, or 0.17 cell cycles. Next, Cdc22, Suc22 and Mrc1 genes were discovered that interacts with each other as the potential candidates in controlling the Ribonucleotide reductase (RNR) activity. (3) Upon studying the phenomenon of Long Term Potentiation (LTP) it was found that the transcription factors, responsible for regulation of gene expression, begin to be elevated as soon as 30 min after induction of LTP, and remain elevated up to 2 hours. (4) Human microRNA data investigation resulted in the successful identification of two miRNA families i.e. let-7 and mir-30. (5) When we analysed the CNS cancer data, a set of 10 genes (HMG-I(Y), NBL1, UBPY, Dynein, APC, TARBP2, hPGT, LTC4S, NTRK3, and Gps2) was found to give 85% correct prediction on drug response. (6) Upon studying the AMPA, GABRA and NMDA receptors we hypothesize that phenylalanine (F at position 269) and leucine (L at position 353) in these receptors play the role of a binding centre for their interaction with several other genes/proteins such as c-jun, mGluR3, Jerky, BDNF, FGF-2, IGF-1, GALR1, NOS and S100beta. All the developed methods that we have used to discover above mentioned findings are very generic and can be easily applied on any dataset with some constraints. We believe that this research has established the significant fact that integrative use of various computational intelligence methods is critical to reveal new aspects of the problem and finally knowledge integration is also a must. During this coursework, I have significantly published this research in reputed international journals, presented results in several conferences and also produced book chapters.
19

The role of the homeodomain transcription factor Pitx2 in regulating skeletal muscle precursor migration and higher order muscle assembly

Campbell, Adam L. 31 May 2012 (has links)
Cells of the ventrolateral dermomyotome delaminate and migrate into the limb buds where they give rise to all muscles of the limbs. The migratory cells proliferate and form myoblasts, which withdraw from the cell cycle to become terminally differentiated myocytes. The regulatory mechanisms that control the later steps of this myogenic program are not well understood. The homeodomain transcription factor Pitx2 is expressed specifically in the muscle lineage from the migration of precursors to adult muscle. Ablation of Pitx2 results in distortion, rather than loss, of limb muscle anlagen, suggesting that its function becomes critical during the colonization of, and/or fiber assembly in, the anlagen. Microarrays were used to identify changes in gene expression in flow-sorted migratory muscle precursors from Wild type and Pitx2 null mice. Changes in gene expression were observed in genes encoding cytoskeletal, adhesion and fusion proteins which play a role in cell motility and myoblast fusion. We observed decreased cellular motility, disrupted cytoskeleton organization and focal adhesion distribution, decreased fusion of mononucleated myoblasts into multinucleated myotubes and decreased proliferation in presence of Ptix2. These studies suggest that Pitx2 plays a critical role in regulating the timing of myoblast filling the limb anlagen which may have detrimental consequences for higher order muscle architecture. / Graduation date: 2013
20

Applying MapReduce Island-based Genetic Algorithm-Particle Swarm Optimization to the inference of large Gene Regulatory Network in Cloud Computing environment

Huang, Wei-Jhe 13 September 2012 (has links)
The construction of Gene Regulatory Networks (GRNs) is one of the most important issues in systems biology. To infer a large-scale GRN with a nonlinear mathematical model, researchers need to encounter the time-consuming problem due to the large number of network parameters involved. In recent years, the cloud computing technique has been widely used to solve large-scale problems. Among others, Hadoop is currently the most well-known and reliable cloud computing framework, which allows users to analyze large amount of data in a distributed environment (i.e., MapReduce). It also supports data backup and data recovery mechanisms. This study proposes an Island-based GAPSO algorithm under the Hadoop cloud computing environment to infer large-scale GRNs. GAPSO exploited the position and velocity functions of PSO, and integrated the operations of Genetic Algorithm. This approach is often used to derive the optimal solution in nonlinear mathematical models. Several sets of experiments have been conducted, in which the number of network nodes varied from 50 to 125. The experiments were executed in the Hadoop distributed environment with 10, 20, and 26 computers, respectively. In the experiments of inferring the network with 125 gene nodes on the largest Hadoop cluster (i.e. 26 computers), the proposed framework performed up to 9.7 times faster than the stand-alone computer. It means that our work can successfully reduce 90% of the computation time in a single experimental run.

Page generated in 0.0645 seconds