• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 15
  • 12
  • 1
  • Tagged with
  • 60
  • 60
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Visualizing the role of the SPT4-SPT5 complex in gene transcription

Vangala, Sai 13 July 2017 (has links)
The Spt4-Spt5 heterodimer complex is one of the key transcription elongation factors for RNA polymerase II, and thus helps to regulate gene expression with either positive or negative stimulation. Spt5 is a part of the NusG family of proteins, and is universally conserved across all three domains of life. This complex is also noted to be involved in many other cellular functions, including chromatin folding, DNA repair, and 5’ cap recruitment; both subunits also play roles in cellular activity when not bound together. However, there is still a great deal of insight to gain about this compound’s functions. This report delves into a variety of previous studies on this complex, summarizing known facts. It will describe how the Spt4-Spt5 complex is actually involved in facilitating transcription for nearly every type of RNA polymerase known so far, and that the secondary characteristics define each homologous structure. The variety of laboratory techniques utilized in these studies will also be noted, and the functionality of this versatile complex will be conveyed as known.
12

Epigenetic Dysregulations in the Brain of Human Alcoholics : Analysis of Opioid Genes

Bazov, Igor January 2016 (has links)
Neuropeptides are special in their expression profiles restricted to neuronal subpopulations and low tissue mRNA levels. Genetic, epigenetic and transcriptional mechanisms that define spatiotemporal expression of the neuropeptide genes have utmost importance for the formation and functions of neural circuits in normal and pathological human brain. This thesis focuses on regulation of transcription of the opioid/nociceptin genes, the largest neuropeptide family, and on identification of adaptive changes in these mechanisms associated with alcoholism as model human pathology. Two epigenetic mechanisms, the common for most cells in the dorsolateral prefrontal cortex (dlPFC) and the neuron-subpopulation specific that may orchestrate prodynorphin (PDYN) transcription in the human dlPFC have been uncovered. The first, repressive mechanism may operate through control of DNA methylation/demethylation in a short, nucleosome size promoter CpG island (CGI). The second mechanism may involve USF2, the sequence–specific methylation–sensitive transcription factor which interaction with its target element in the CpG island results in USF2 and PDYN co-expression in the same neurons. The short PDYN promoter CGI may function as a chromatin element that integrates cellular and environmental signals through changes in methylation and transcription factor binding. Alterations in USF2–dependent PDYN transcription are affected by the promoter SNP (rs1997794: T>C) under transition to pathological state, i.e. in the alcoholic brain. This and two other PDYN SNPs that are most significantly associated with alcoholism represent CpG-SNPs, which are differentially methylated in the human dlPFC. The T, low risk allele of the promoter SNP forms a noncanonical AP-1–binding element. JUND and FOSB proteins, which may form homo- or heterodimers have been identified as dominant constituents of AP-1 complex. The C, non-risk variant of the PDYN 3′ UTR SNP (rs2235749 SNP: C>T) demonstrated significantly higher methylation in alcoholics compared to controls. PDYN mRNA and dynorphin levels significantly and positively correlated with methylation of the PDYN 3′ UTR CpG-SNP suggesting its involvement in PDYN regulation. A DNA–binding factor with differential binding affinity for the T allele and methylated and unmethylated C alleles of the PDYN 3′ UTR SNP (the T allele specific binding factor, Ta-BF) has been discovered, which may function as a regulator of PDYN transcription. These findings emphasize the complexity of PDYN regulation that determines its expression in specific neuronal subpopulations and suggest previously unknown integration of epigenetic, transcriptional and genetic mechanisms that orchestrate alcohol–induced molecular adaptations in the human brain. Given the important role of PDYN in addictive behavior, the findings provide a new insight into fundamental molecular mechanisms of human brain disorder. In addition to PDYN in the dlPFC, the PNOC gene in the hippocampus and OPRL1 gene in central amygdala that were downregulated in alcoholics may contribute to impairment of cognitive control over alcohol seeking and taking behaviour.
13

Role of the 26S Proteasome and Posttranslational Modifications in Regulating the Expression of Retinoic Acid-Responsive Genes

Higazi, Aliaa M. 19 April 2011 (has links)
Retinoic acid (RA) has been recognized as a chemotherapeutic agent for various malignances such as lung, skin as well as cervical cancers. It binds to retinoid receptors heterodimers and consequently activates several RA-responsive genes which are involved in many biological processes including vertebrate development, bone growth, vision, haematopoiesis, cell growth, differentiation and apoptosis. These genes are under the control of numerous regulators to ensure their timely ordered activities. Among these regulators, we focused here on the 26S proteasome and ubiquitination. It has been reported that the activity of the ubiquitin/proteasome system (UPS) plays a fundamental role in retinoic acid receptor (RAR)-regulated transactivation. The mechanisms underlying this role, however, remain to be established. Chromatin immunoprecipitation (ChIP) assays in our study demonstrated that the 26S proteasome activity is important for preserving the occupancy of a TATA box-containing RA-responsive promoters by liganded retinoid receptors and thus by their coactivators. Additionally, by using coimmunoprecipitation assays and by measuring the half-life of retinoid receptors, we found that the non-proteolytic function of the proteasome is required for ligand-dependent association between DNA-free RAR-α and both DNA-free RXR-α and coactivators. Moreover, using immunofluorescent staining and in vivo ubiquitination assays, a proteasome inhibition-dependent cytoplasmic localization of RAR-α as well as ligand-enhanced ubiquitination and stabilization of RAR-α were shown. Our findings therefore, define novel mechanisms by which the UPS controls RAR-regulated genes. Furthermore, we shed new light on the regulators of retinoid receptors ubiquitination and subcellular localization.
14

Role of the 26S Proteasome and Posttranslational Modifications in Regulating the Expression of Retinoic Acid-Responsive Genes

Higazi, Aliaa M. 19 April 2011 (has links)
Retinoic acid (RA) has been recognized as a chemotherapeutic agent for various malignances such as lung, skin as well as cervical cancers. It binds to retinoid receptors heterodimers and consequently activates several RA-responsive genes which are involved in many biological processes including vertebrate development, bone growth, vision, haematopoiesis, cell growth, differentiation and apoptosis. These genes are under the control of numerous regulators to ensure their timely ordered activities. Among these regulators, we focused here on the 26S proteasome and ubiquitination. It has been reported that the activity of the ubiquitin/proteasome system (UPS) plays a fundamental role in retinoic acid receptor (RAR)-regulated transactivation. The mechanisms underlying this role, however, remain to be established. Chromatin immunoprecipitation (ChIP) assays in our study demonstrated that the 26S proteasome activity is important for preserving the occupancy of a TATA box-containing RA-responsive promoters by liganded retinoid receptors and thus by their coactivators. Additionally, by using coimmunoprecipitation assays and by measuring the half-life of retinoid receptors, we found that the non-proteolytic function of the proteasome is required for ligand-dependent association between DNA-free RAR-α and both DNA-free RXR-α and coactivators. Moreover, using immunofluorescent staining and in vivo ubiquitination assays, a proteasome inhibition-dependent cytoplasmic localization of RAR-α as well as ligand-enhanced ubiquitination and stabilization of RAR-α were shown. Our findings therefore, define novel mechanisms by which the UPS controls RAR-regulated genes. Furthermore, we shed new light on the regulators of retinoid receptors ubiquitination and subcellular localization.
15

The use of comparative genomics to investigate mechanisms of cadmium induced transcription

Tvermoes, Brooke Erin January 2009 (has links)
<p>Cadmium is a human carcinogen and a persistent environmental pollutant of increasing concern. Yet, the exact molecular targets of cadmium toxicity and the molecular mechanisms by which cadmium influences gene expression have not been fully elucidated. Therefore, the characterization of cadmium-inducible genes will provide a better understanding of the underlying mechanism involved in sensing cadmium-stress and the subsequent signaling pathways important for cellular defense against cadmium toxicity. To this end, we characterized two cadmium-responsive genes of no known biological function from the nematode Caenorhabditis elegans (C. elegans), numr-1 and numr-2.</p><p>Expression analysis of numr-1 and numr-2 revealed the same temporal and spatial expression patterns of both genes in the absence and presence of metal treatment. In the absence of metal, constitutive expression of numr-1/-2 was developmentally regulated. When adult animals were exposed to metal, numr-1/-2 expression dramatically increased. We show that worms overexpressing numr-1/-2 were more resistant to metal stress and longer lived than control animals; whereas reducing numr-1/-2 activity resulted in increased sensitivity to metal exposure. Furthermore, in the absence of metal, the two numr-1 mutant alleles, tm2775 and ok2239, exhibited decreased muscular functions. The molecular characterization of numr-1 and numr-2 also revealed that the expression of these two genes, at least in part, was regulated by changes in intracellular calcium concentrations ([Ca2+]i). This finding lead us to reevaluate the role of calcium mobilization in cadmium-induced transcription. </p><p>While several studies have indicated that exposure to cadmium resulted in increased [Ca2+]i, the mechanism by which cadmium can effect [Ca2+]i and concurrent effects on gene expression remain poorly understood. Therefore, we investigated the effects of low-level cadmium exposure, sufficient to induce transcription of cadmium-responsive genes, on the regulation of [Ca2+]i. In these studies, we utilized the protein-based calcium sensor YC 3.60 stably expressed in a HEK293 cell line. YC 3.60 is insensitive to cadmium ions, and thus is useful to monitor changes in [Ca2+]i following cadmium treatment. Exposing HEK293 cells to 1-30 µM cadmium was sufficient to induce transcription of cadmium-responsive genes such as metallothionein. Cadmium exposure from 1-10 µM had no effect on cell viability, [Ca2+]i mobilization, or increased transcriptional activity of calcium-responsive genes. In contrast, exposure to 30 µM cadmium significantly decreased cell viability, reduced intracellular calcium stores, and significantly altered the transcriptional activity of calcium-responsive genes. Taken together, these data indicate that low-level cadmium exposures (1-10 µM) can induce transcription of cadmium-responsive genes such as metallothionein independent of [Ca2+]i mobilization. </p><p>To gain further insight into the mechanistic relationship between cadmium and calcium we investigated the effects of cadmium exposure on the defecation cycle of C. elegans. Defecation is a highly rhythmic behavior that is regulated by calcium oscillations. We found that low-level cadmium exposures, sufficient to induce expression of cadmium-responsive genes such as numr-1/-2, significantly shortened the defecation cycle but did not alter the rhythm of the cycle or the magnitude of the intestinal calcium oscillations. Modulation of lipid metabolism in C. elegans results in a similar shortened defecation cycle, whereas modulation of [Ca2+]i results in lengthened and arrhythmic defection cycles, suggesting that the mechanism by which cadmium alters defecation is independent of [Ca2+]i mobilization.</p><p>In summary, the data in this work demonstrates that low-level cadmium exposure induces expression of cadmium-responsive genes independent of calcium mobilization. Thus, modulation of intracellular calcium is unlikely the primary mechanism by which cadmium regulates transcription at low-levels of exposure.</p> / Dissertation
16

Role of the 26S Proteasome and Posttranslational Modifications in Regulating the Expression of Retinoic Acid-Responsive Genes

Higazi, Aliaa M. 19 April 2011 (has links)
Retinoic acid (RA) has been recognized as a chemotherapeutic agent for various malignances such as lung, skin as well as cervical cancers. It binds to retinoid receptors heterodimers and consequently activates several RA-responsive genes which are involved in many biological processes including vertebrate development, bone growth, vision, haematopoiesis, cell growth, differentiation and apoptosis. These genes are under the control of numerous regulators to ensure their timely ordered activities. Among these regulators, we focused here on the 26S proteasome and ubiquitination. It has been reported that the activity of the ubiquitin/proteasome system (UPS) plays a fundamental role in retinoic acid receptor (RAR)-regulated transactivation. The mechanisms underlying this role, however, remain to be established. Chromatin immunoprecipitation (ChIP) assays in our study demonstrated that the 26S proteasome activity is important for preserving the occupancy of a TATA box-containing RA-responsive promoters by liganded retinoid receptors and thus by their coactivators. Additionally, by using coimmunoprecipitation assays and by measuring the half-life of retinoid receptors, we found that the non-proteolytic function of the proteasome is required for ligand-dependent association between DNA-free RAR-α and both DNA-free RXR-α and coactivators. Moreover, using immunofluorescent staining and in vivo ubiquitination assays, a proteasome inhibition-dependent cytoplasmic localization of RAR-α as well as ligand-enhanced ubiquitination and stabilization of RAR-α were shown. Our findings therefore, define novel mechanisms by which the UPS controls RAR-regulated genes. Furthermore, we shed new light on the regulators of retinoid receptors ubiquitination and subcellular localization.
17

Role of the 26S Proteasome and Posttranslational Modifications in Regulating the Expression of Retinoic Acid-Responsive Genes

Higazi, Aliaa M. January 2011 (has links)
Retinoic acid (RA) has been recognized as a chemotherapeutic agent for various malignances such as lung, skin as well as cervical cancers. It binds to retinoid receptors heterodimers and consequently activates several RA-responsive genes which are involved in many biological processes including vertebrate development, bone growth, vision, haematopoiesis, cell growth, differentiation and apoptosis. These genes are under the control of numerous regulators to ensure their timely ordered activities. Among these regulators, we focused here on the 26S proteasome and ubiquitination. It has been reported that the activity of the ubiquitin/proteasome system (UPS) plays a fundamental role in retinoic acid receptor (RAR)-regulated transactivation. The mechanisms underlying this role, however, remain to be established. Chromatin immunoprecipitation (ChIP) assays in our study demonstrated that the 26S proteasome activity is important for preserving the occupancy of a TATA box-containing RA-responsive promoters by liganded retinoid receptors and thus by their coactivators. Additionally, by using coimmunoprecipitation assays and by measuring the half-life of retinoid receptors, we found that the non-proteolytic function of the proteasome is required for ligand-dependent association between DNA-free RAR-α and both DNA-free RXR-α and coactivators. Moreover, using immunofluorescent staining and in vivo ubiquitination assays, a proteasome inhibition-dependent cytoplasmic localization of RAR-α as well as ligand-enhanced ubiquitination and stabilization of RAR-α were shown. Our findings therefore, define novel mechanisms by which the UPS controls RAR-regulated genes. Furthermore, we shed new light on the regulators of retinoid receptors ubiquitination and subcellular localization.
18

Regulatory role of regulatory factor for box (RFX5) complex and class II transactivator (CIITA) in the transcription repression of the collagen alpha2(I) gene

Xu, Yong January 2005 (has links)
Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / Type I collagen, which consists of two alpha1 chains [α1(I), COL1A1 ] and one alpha2 chain [α2(I), COL1A2 ], is the most abundant member of the collagen family. Interferon-gamma (IFN-γ), which is both an important pro-inflammatory and a anti fibrotic cytokine, coordinately suppresses both α1(I) and α2(I) production primarily at the transcriptional level. Previous work identified a regulatory factor for X-box (RFX) binding site in the first exon of the collagen α2(I) gene. RFX5 complex, consisting of three proteins (RFX5, RFXB, and RFXAP), as well as class II transactivator (CIITA), activates major histocompatibility complex class II (MHC II) transcription during IFN-γ stimulation. This thesis demonstrates that these factors mediate repression of collagen gene transcription in response to IFN-γ. All three RFX5 complex proteins were required for maximum repression of COL1A2 promoter activity. Mutations in regions of RFX5 proteins important for complex formation either reversed repression of collagen transcription or activated collagen transcription, presumably due to dominant negative effects. CIITA, recruited to the collagen transcription start site by RFX5, repressed collagen gene transcription mainly through its acidic and proline-serine-threonine rich domains. Repression of the collagen promoter by CIITA was enhanced in the presence of the RFX5 complex. Inhibition of IFN-γ induced expression of CIITA by RNA interference (RNAi) led to partial alleviation of collagen repression and MHC II activation. IFN-γ decreased collagen transcription at the same time that it increased the expression of RFX5/CIITA complex. In addition, IFN-γ increased the expression of RFXB, but decreased the expression of an RFXB splice variant, RFXBSV. RFXBSV reversed collagen repression by IFN-γ. Both RFX5 and CIITA were present in a large repressor/co-repressor complex containing histone deacetylase (HDAC) and Sin3 proteins. IFN-γ promoted the recruitment of RFX5/CIITA complex as well as HDAC2/Sin3B to the collagen transcription start site, which resulted in the deacetylation of histories surrounding this site. IFN-γ also blocked the occupancy of RNA polymerase II (Pol II) on the collagen transcription start site in conjunction with the increase in CIITA binding. Taken together, these data identify the RFX5/CIITA complex as a repressor of collagen gene transcription. / 2031-01-01
19

Nicotine and learning interact to alter transcription factor activity at the c-jun N-terminal kinase 1 gene promoter in the hippocampus

Kenney, Justin Ward January 2010 (has links)
Approximately 1 in 5 Americans smoke despite the widely known negative health consequences of the habit. One factor that contributes to the high rates of nicotine addiction and its continued use is the ability of the drug to alter long-term memory. Learning in the presence of nicotine results in changes to the cellular and molecular processes that support the formation and storage of long-term memories. The consolidation of long-term memory requires a number of mechanisms, such as gene transcription. Previous work has found that learning a contextual fear conditioning task in the presence of nicotine results in the upregulation of the c-jun N-terminal kinase (JNK1) gene in the hippocampus and that JNK protein activation is necessary for the nicotine induced enhancement of contextual conditioning. The present study examines the transcription factors involved in the transcriptional regulation of jnk1 in the hippocampi of mice following learning in the presence of nicotine. The hypothesis that cAMP response element binding protein (CREB) regulates jnk1 transcription was examined. Further, a protein/DNA transcription factor array was used as an unbiased examination of changes in transcription factor activity following learning in the presence of nicotine. Using chromatin immunoprecipitation (ChIP), transcription factors identified from the array and CREB were examined for changes in their binding to the jnk1 promoter following fear conditioning in the presence of nicotine. An increase in the binding of phosphorylated CREB was found in the jnk1 promoter of mice trained in the presence of nicotine. This implicates CREB activation in the increase of jnk1 transcription following learning in the presence of nicotine. Additionally, data from the transcription factor array suggest other factors such as PARP, TR, USF-1 and E2F-1 as potentially playing a role in the cognitive effects of nicotine. These findings are discussed with respect to how they inform our understanding of the signaling cascades and genetics involved in the memory enhancing effects of this addictive drug. / Psychology
20

Effect of CTCF and Cohesin on the dynamics of RNA polymerase II transcription and coupled pre-messenger RNA processing

Liska, Olga January 2013 (has links)
The CCCTC-binding factor (CTCF) is a versatile, multifunctional zinc-finger protein involved in a broad spectrum of cellular functions. In mammalian cells, CTCF functions together with the Cohesin complex, an essential regulator of sister chromatid cohesion. Together, CTCF and Cohesin have been shown to regulate gene expression at a genome-wide level in mammalian cells. In the yeast Saccharomyces pombe, Cohesin has been implicated in transcription termination of convergently transcribed genes, in a cell cycle dependent manner. The aim of this thesis was to investigate the possibility of direct transcriptional involvement of CTCF and Cohesin in human cells. The first model system applied for this experimental purpose was the β-globin gene with introduced canonical CTCF-binding sites replacing the endogenous Co- Transcriptional Cleavage (CoTC) element downstream of β-globin. The results obtained indicate that recruitment of CTCF to the β-globin 3` flanking region does not prevent read-through transcription. However, CTCF-binding does mediate RNA Polymerase II (Pol II) pausing at the site of recruited CTCF. This results in more efficient pre-mRNA 3` end processing and therefore rescues β-globin mRNA to wild type levels. Cohesin was not detected at the introduced CTCF-binding sites. These results are a contribution to our understanding of the spatio-temporal requirements for cotranscriptional events like 3` end pre-mRNA processing and Pol II kinetics. The second part of my thesis presents an investigation on the involvement of CTCF and Cohesin in lipopolysaccharide (LPS)-induced Tumor Necrosis Factor α (TNFα) gene expression regulation in human monocytes and differentiated M1- and M2-type macrophages. These studies provide first evidence of Cohesin recruitment to the TNFα gene body and its regulatory NFκB-binding sites. Differences in the recruitment profiles obtained indicate potential regulatory differences of TNFα among the three cell types. Preliminary data provide an insight into the effects on TNFα mRNA levels upon down-regulation of Cohesin subunits.

Page generated in 0.1248 seconds