• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Υλοποίηση της μεθόδου παραγοντοποίησης ακεραίων αριθμών number field sieve σε παράλληλο υπολογιστικό περιβάλλον / Implementation of the integer factorization algorithm number field sieve (NFS) on parallel computers

Μπακογιάννης, Χρήστος 21 September 2010 (has links)
Η διείσδυση των υπολογιστών, τόσο στα σπίτια μας, όσο και κυρίως στις επιχειρήσεις, κατά τα τελευταία χρόνια, καθώς επίσης και ο συνεχώς αυξανόμενος ρυθμός χρήσης του διαδικτύου, έχουν καταστήσει την ανάγκη για ασφαλείς ηλεκτρονικές επικοινωνίες και συναλλαγές κάτι παραπάνω από επιτακτική. Ένα από τα κυρίαρχα, σήμερα, συστήματα ασφαλούς ανταλλαγής δεδομένων είναι ο αλγόριθμος RSA, η ασφάλεια του οποίου βασίζεται στο γεγονός ότι είναι πολύ δύσκολο να παραγοντοποιήσουμε έναν «μεγάλο» αριθμό στους πρώτους παράγοντές του. Ο RSA αλγόριθμος θεωρείται αρκετά ασφαλής, αν βέβαια χρησιμοποιούμε κατάλληλο, για τα σημερινά δεδομένα, μέγεθος κλειδιού. Παρόλα αυτά, σε περίπτωση που βρεθεί κάποιος αποδοτικός αλγόριθμος που να μπορεί σε «λογικό» χρόνο να παραγοντοποιήσει οποιονδήποτε μεγάλο ακέραιο, τότε αυτομάτως η ασφάλεια του αλγορίθμου αυτού έχει παραβιαστεί και θα πρέπει να στραφούμε σε εναλλακτικές μεθόδους προστασίας της πληροφορίας. Ο πιο αποδοτικός σήμερα αλγόριθμος παραγοντοποίησης μεγάλων ακεραίων είναι ο Number Field Sieve. Η έρευνα που έχει γίνει πάνω σε αυτόν τον αλγόριθμο, έχει οδηγήσει σε σημαντική πρόοδο και έχει καταστήσει, πλέον, εφικτή την παραγοντοποίηση ακεραίων που υπό άλλες προϋποθέσεις θα απαιτούσε χιλιάδες χρόνια από cpu time σε supercomputers. Αν και ακόμη και σήμερα υπάρχουν αρκετά σημεία που θα μπορούσαν να βελτιωθούν στον αλγόριθμο, κάνοντάς τον ακόμη πιο αποδοτικό, ωστόσο η πολυπλοκότητά του αποτρέπει αρκετούς να ασχοληθούν με την βελτίωσή του. Με την εργασία αυτή θα προσπαθήσουμε αρχικά να διασαφηνίσουμε όλες τις πληροφορίες που απαιτούνται για την σωστή κατανόηση της λειτουργίας του αλγορίθμου. Θα γίνει λεπτομερής περιγραφή των διαφόρων βημάτων του αλγορίθμου και θα δοθεί αναλυτικό παράδειγμα παραγοντοποίησης. Τέλος, θα παρουσιαστεί η παράλληλη υλοποίησή του αλγορίθμου, η οποία μπορεί να εκτελεστεί τόσο σε supercomputer, όσο και σε cluster υπολογιστών που επικοινωνούν μεταξύ τους με χρήση του MPI. / The recent advances in computer science, in combination with the proliferation of computers in home and businesses and the explosive growth rate of the internet transactions, have increased the needs for secure electronic communications. One of the dominant systems of secure data transactions is the RSA algorithm. RSA’ s security relies on the fact that it is computationally difficult to factor a “large” integer into its component prime integers. RSA is considered secure as long as we use proper key length. However, if an efficient algorithm is developed that can factor any arbitrarily large integer in a “reasonable” amount of time, then the whole security of the algorithm will be broken, and we will have to use alternative methods to secure our systems. Today, the fastest known method for factoring large integers is the General Number Field Sieve algorithm. Research and development of the algorithm has enabled the factorization of integers that were once thought to require thousands of years of CPU time to accomplish. While there are still many possible optimizations that could increase the algorithm’s efficiency, however the complexity of the algorithm prevents many researchers from attempting to improve it. In this master thesis we present the information needed to understand the principles upon which the algorithm is based. The discrete steps of the algorithm are described in full detail, as well as a detailed factorization example, in order to enlighten the way each step works. Finally a parallel implementation is presented, able to be executed on a supercomputer or a computer cluster, with the use of MPI.
2

Η μέθοδος παραγοντοποίησης ακεραίων αριθμών number field sieve : θεωρία και υλοποίηση / The integer factorization algorithm number field sieve : theory and implementation

Καραπάνος, Νικόλαος 21 September 2010 (has links)
Πολλά κρυπτογραφικά σχήματα δημόσιου κλειδιού βασίζονται στο γεγονός ότι είναι υπολογιστικά δύσκολο να παραγοντοποιήσουμε μεγάλους ακέραιους αριθμούς. Ο ταχύτερος, και ταυτόχρονα πολυπλοκότερος, κλασσικός αλγόριθμος που είναι γνωστός μέχρι σήμερα για την παραγοντοποίηση ακεραίων μήκους άνω των 110 δεκαδικών ψηφίων είναι ο General Number Field Sieve (GNFS). Ο αλγόριθμος αυτός είναι ο καρπός πολλών ετών έρευνας, κατά τη διάρκεια της οποίας παράγονταν ολοένα και ταχύτεροι αλγόριθμοι για να καταλήξουμε μέχρι στιγμής στον αλγόριθμο GNFS. Πρωταρχικός σκοπός της παρούσης μεταπτυχιακής εργασίας είναι η παρουσίαση του θεωρητικού μαθηματικού υπόβαθρου πάνω στο οποίο βασίζεται ο GNFS καθώς και η ακολουθιακή υλοποίηση της βασικής εκδοχής του αλγορίθμου. Ως γλώσσα υλοποίησης επιλέχθηκε η C++. Η υλοποίηση έγινε σε συνεργασία με τον συμφοιτητή μου και αγαπητό φίλο Χρήστο Μπακογιάννη, όπου στα πλαίσια της μεταπτυχιακής του εργασίας πραγματοποιήθηκε η μεταφορά της ακολουθιακής υλοποίησης του αλγορίθμου σε παράλληλο κατανεμημένο περιβάλλον χρησιμοποιώντας το Message Passing Interface (MPI). Ο πηγαίος κώδικας της υλοποίησης καθώς και σχετικές πληροφορίες υπάρχουν online στη σελίδα http://kmgnfs.cti.gr. Σημειώνεται πως για την ευκολότερη και απρόσκοπτη ανάγνωση της εργασίας αυτής, ο αναγνώστης θα πρέπει να έχει ένα βαθμό εξοικείωσης με βασικές έννοιες της θεωρίας αριθμών, της αλγεβρικής θεωρίας αριθμών και της γραμμικής άλγεβρας. / Many public-key cryptosystems build their security on our inability to factor very large integers. The General Number Field Sieve (GNFS) is the most efficient, and at the same time most complex, classical known algorithm for factoring integers larger than 110 digits. This algorithm is the result of many years of research, during which, faster and faster algorithms were developed finally winding up to the development of the GNFS. The main purpose of this master thesis is the presentation of the mathematical ideas, on which the GNFS was developed, as well as a sequential implementation of the basic version of the algorithm. C++ was the language of choice. The implementation took place in collaboration with my colleague and dear friend Christos Bakogiannis, where as part of his master thesis, a distributed implementation of the algorithm using Message Passing Interface (MPI) was also developed. The source code of the implementations is publicly available and can be found online at http://kmgnfs.cti.gr. It is presumed that the reader is familiar with basic concepts of number theory, algebraic number theory and linear algebra.
3

Integer Factorization on the GPU / Integer Factorization on the GPU

Podhorský, Jiří January 2014 (has links)
This work deals with factorization, a decomposition of composite numbers on prime numbers and possibilities of its parallelization. It summarizes also the best known algorithms for factoring and most popular platforms for the implementation of these algorithms on the graphics card. The main part of the thesis deals with the design and implementation of hardware acceleration current fastest algorithm on the graphics card by using the OpenCL framework. Subsequently, the work provides a comparison of speeds accelerated algorithm implemented in this work with other versions of the best known algorithms for factoring, processed serially. In conclusion, the work discussed length of RSA key needed for safe operation without the possibility of breaking in real time interval.

Page generated in 0.083 seconds