• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal estimation of head scan data with generalized cross validation

Fang, Haian January 1995 (has links)
No description available.
2

Data-driven estimation for Aalen's additive risk model

Boruvka, Audrey 02 August 2007 (has links)
The proportional hazards model developed by Cox (1972) is by far the most widely used method for regression analysis of censored survival data. Application of the Cox model to more general event history data has become possible through extensions using counting process theory (e.g., Andersen and Borgan (1985), Therneau and Grambsch (2000)). With its development based entirely on counting processes, Aalen’s additive risk model offers a flexible, nonparametric alternative. Ordinary least squares, weighted least squares and ridge regression have been proposed in the literature as estimation schemes for Aalen’s model (Aalen (1989), Huffer and McKeague (1991), Aalen et al. (2004)). This thesis develops data-driven parameter selection criteria for the weighted least squares and ridge estimators. Using simulated survival data, these new methods are evaluated against existing approaches. A survey of the literature on the additive risk model and a demonstration of its application to real data sets are also provided. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2007-07-18 22:13:13.243
3

High angular resolution diffusion-weighted magnetic resonance imaging: adaptive smoothing and applications

Metwalli, Nader 07 July 2010 (has links)
Diffusion-weighted magnetic resonance imaging (MRI) has allowed unprecedented non-invasive mapping of brain neural connectivity in vivo by means of fiber tractography applications. Fiber tractography has emerged as a useful tool for mapping brain white matter connectivity prior to surgery or in an intraoperative setting. The advent of high angular resolution diffusion-weighted imaging (HARDI) techniques in MRI for fiber tractography has allowed mapping of fiber tracts in areas of complex white matter fiber crossings. Raw HARDI images, as a result of elevated diffusion-weighting, suffer from depressed signal-to-noise ratio (SNR) levels. The accuracy of fiber tractography is dependent on the performance of the various methods extracting dominant fiber orientations from the HARDI-measured noisy diffusivity profiles. These methods will be sensitive to and directly affected by the noise. In the first part of the thesis this issue is addressed by applying an objective and adaptive smoothing to the noisy HARDI data via generalized cross-validation (GCV) by means of the smoothing splines on the sphere method for estimating the smooth diffusivity profiles in three dimensional diffusion space. Subsequently, fiber orientation distribution functions (ODFs) that reveal dominant fiber orientations in fiber crossings are then reconstructed from the smoothed diffusivity profiles using the Funk-Radon transform. Previous ODF smoothing techniques have been subjective and non-adaptive to data SNR. The GCV-smoothed ODFs from our method are accurate and are smoothed without external intervention facilitating more precise fiber tractography. Diffusion-weighted MRI studies in amyotrophic lateral sclerosis (ALS) have revealed significant changes in diffusion parameters in ALS patient brains. With the need for early detection of possibly discrete upper motor neuron (UMN) degeneration signs in patients with early ALS, a HARDI study is applied in order to investigate diffusion-sensitive changes reflected in the diffusion tensor imaging (DTI) measures axial and radial diffusivity as well as the more commonly used measures fractional anisotropy (FA) and mean diffusivity (MD). The hypothesis is that there would be added utility in considering axial and radial diffusivities which directly reflect changes in the diffusion tensors in addition to FA and MD to aid in revealing neurodegenerative changes in ALS. In addition, applying adaptive smoothing via GCV to the HARDI data further facilitates the application of fiber tractography by automatically eliminating spurious noisy peaks in reconstructed ODFs that would mislead fiber tracking.

Page generated in 0.1425 seconds