• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large and rare : An extreme values approach to estimating the distribution of large defects in high-performance steels

Ekengren, Jens January 2011 (has links)
The presence of different types of defects is an important reality for manufacturers and users of engineering materials. Generally, the defects are either considered to be the unwanted products of impurities in the raw materials or to have been introduced during the manufacturing process. In high-quality steel materials, such as tool steel, the defects are usually non-metallic inclusions such as oxides or sulfides. Traditional methods for purity control during standard manufacturing practice are usually based on the light optical microscopy scanning of polished surfaces and some statistical evaluation of the results. Yet, as the steel manufacturing process has improved, large defects have become increasingly rare. A major disadvantage of the traditional quality control methods is that the accuracy decreases proportionally to the increased rarity of the largest defects unless large areas are examined. However, the use of very high cycle fatigue to 109 cycles has been shown to be a powerful method to locate the largest defects in steel samples. The distribution of the located defects may then be modelled using extreme value statistics. This work presents new methods for determining the volume distribution of large defects in high-quality steels, based on ultrasonic fatigue and the Generalized Extreme Value (GEV) distribution. The methods have been developed and verified by extensive experimental testing, including over 400 fatigue test specimens. Further, a method for reducing the distributions into one single ranking variable has been proposed, as well as a way to estimate an ideal endurance strength at different life lengths using the observed defects and endurance limits. The methods can not only be used to discriminate between different materials made by different process routes, but also to differentiate between different batches of the same material. It is also shown that all modes of the GEV are to be found in different steel materials, thereby challenging a common assumption that the Gumbel distribution, a special case of the GEV, is the appropriate distribution choice when determining the distribution of defects. The new methods have been compared to traditional quality control methods used in common practice (surface scanning using LOM/SEM and ultrasound C-scan), and suggest a greater number of large defects present in the steel than could otherwise be detected.
2

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos

Hartmann, Marcelo 09 March 2015 (has links)
Made available in DSpace on 2016-06-02T20:06:51Z (GMT). No. of bitstreams: 1 6609.pdf: 3049383 bytes, checksum: 33c7f1618f776ca50cf4694aaba80ea5 (MD5) Previous issue date: 2015-03-09 / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter _ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets. / Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação _ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados.
3

Distribuição generalizada de chuvas máximas no Estado do Paraná. / Local and regional frequency analysis by lh-moments and generalized distributions

Pansera, Wagner Alessandro 07 December 2013 (has links)
Made available in DSpace on 2017-05-12T14:46:53Z (GMT). No. of bitstreams: 1 Wagner.pdf: 5111902 bytes, checksum: b4edf3498cca6f9c7e2a9dbde6e62e18 (MD5) Previous issue date: 2013-12-07 / The purpose of hydrologic frequency analysis is to relate magnitude of events with their occurrence frequency based on probability distribution. The generalized probability distributions can be used on the study concerning extreme hydrological events: extreme events, logistics and Pareto. There are several methodologies to estimate probability distributions parameters, however, L-moments are often used due to computational easiness. Reliability of quantiles with high return period can be increased by LH-moments or high orders L-moments. L-moments have been widely studied; however, there is little information about LH-moments on literature, thus, there is a great research requirement on such area. Therefore, in this study, LH-moments were studied under two approaches commonly used in hydrology: (i) local frequency analysis (LFA) and (ii) regional frequency analysis (RFA). Moreover, a database with 227 rainfall stations was set (daily maximum annual), in Paraná State, from 1976 to 2006. LFA was subdivided into two steps: (i) Monte Carlo simulations and (ii) application of results to database. The main result of Monte Carlo simulations was that LH-moments make 0.99 and 0.995 quantiles less biased. Besides, simulations helped on creating an algorithm to perform LFA by generalized distributions. The algorithm was applied to database and enabled an adjustment of 227 studied series. In RFA, the 227stations have been divided into 11 groups and regional growth curves were obtained; while local quantiles were obtained from the regional growth curves. The difference between local quantiles obtained by RFA was quantified with those obtained via LFA. The differences may be approximately 33 mm for return periods of 100 years. / O objetivo da análise de frequência das variáveis hidrológicas é relacionar a magnitude dos eventos com sua frequência de ocorrência por meio do uso de uma distribuição de probabilidade. No estudo de eventos hidrológicos extremos, podem ser usadas as distribuições de probabilidade generalizadas: de eventos extremos, logística e Pareto. Existem diversas metodologias para a estimativa dos parâmetros das distribuições de probabilidade, no entanto, devido às facilidades computacionais, utilizam-se frequentemente os momentos-L. A confiabilidade dos quantis com alto período de retorno pode ser aumentada utilizando os momentos-LH ou momentos-L de altas ordens. Os momentos-L foram amplamente estudados, todavia, os momentos-LH apresentam literatura reduzida, logo, mais pesquisas são necessárias. Portanto, neste estudo, os momentos-LH foram estudados sob duas abordagens comumente utilizadas na hidrologia: (i) Análise de frequência local (AFL) e (ii) Análise de frequência regional (AFR). Além disso, foi montado um banco de dados com 227 estações pluviométricas (máximas diárias anuais), localizadas no Estado do Paraná, no período de 1976 a 2006. A AFL subdividiu-se em duas etapas: (i) Simulações de Monte Carlo e (ii) Aplicação dos resultados ao banco de dados. O principal resultado das simulações de Monte Carlo foi que os momentos-LH tornam os quantis 0,99 e 0,995 menos enviesados. Além disso, as simulações viabilizaram a criação de um algoritmo para realizar a AFL utilizando as distribuições generalizadas. O algoritmo foi aplicado ao banco de dados e possibilitou ajuste das 227 séries estudadas. Na AFR, as 227 estações foram dividas em 11 grupos e foram obtidas as curvas de crescimento regional. Os quantis locais foram obtidos a partir das curvas de crescimento regional. Foi quantificada a diferença entre os quantis locais obtidos via AFL com aqueles obtidos via AFR. As diferenças podem ser de aproximadamente 33 mm para períodos de retorno de 100 anos.
4

Distribuição generalizada de chuvas máximas no Estado do Paraná. / Local and regional frequency analysis by lh-moments and generalized distributions

Pansera, Wagner Alessandro 07 December 2013 (has links)
Made available in DSpace on 2017-07-10T19:23:40Z (GMT). No. of bitstreams: 1 Wagner.pdf: 5111902 bytes, checksum: b4edf3498cca6f9c7e2a9dbde6e62e18 (MD5) Previous issue date: 2013-12-07 / The purpose of hydrologic frequency analysis is to relate magnitude of events with their occurrence frequency based on probability distribution. The generalized probability distributions can be used on the study concerning extreme hydrological events: extreme events, logistics and Pareto. There are several methodologies to estimate probability distributions parameters, however, L-moments are often used due to computational easiness. Reliability of quantiles with high return period can be increased by LH-moments or high orders L-moments. L-moments have been widely studied; however, there is little information about LH-moments on literature, thus, there is a great research requirement on such area. Therefore, in this study, LH-moments were studied under two approaches commonly used in hydrology: (i) local frequency analysis (LFA) and (ii) regional frequency analysis (RFA). Moreover, a database with 227 rainfall stations was set (daily maximum annual), in Paraná State, from 1976 to 2006. LFA was subdivided into two steps: (i) Monte Carlo simulations and (ii) application of results to database. The main result of Monte Carlo simulations was that LH-moments make 0.99 and 0.995 quantiles less biased. Besides, simulations helped on creating an algorithm to perform LFA by generalized distributions. The algorithm was applied to database and enabled an adjustment of 227 studied series. In RFA, the 227stations have been divided into 11 groups and regional growth curves were obtained; while local quantiles were obtained from the regional growth curves. The difference between local quantiles obtained by RFA was quantified with those obtained via LFA. The differences may be approximately 33 mm for return periods of 100 years. / O objetivo da análise de frequência das variáveis hidrológicas é relacionar a magnitude dos eventos com sua frequência de ocorrência por meio do uso de uma distribuição de probabilidade. No estudo de eventos hidrológicos extremos, podem ser usadas as distribuições de probabilidade generalizadas: de eventos extremos, logística e Pareto. Existem diversas metodologias para a estimativa dos parâmetros das distribuições de probabilidade, no entanto, devido às facilidades computacionais, utilizam-se frequentemente os momentos-L. A confiabilidade dos quantis com alto período de retorno pode ser aumentada utilizando os momentos-LH ou momentos-L de altas ordens. Os momentos-L foram amplamente estudados, todavia, os momentos-LH apresentam literatura reduzida, logo, mais pesquisas são necessárias. Portanto, neste estudo, os momentos-LH foram estudados sob duas abordagens comumente utilizadas na hidrologia: (i) Análise de frequência local (AFL) e (ii) Análise de frequência regional (AFR). Além disso, foi montado um banco de dados com 227 estações pluviométricas (máximas diárias anuais), localizadas no Estado do Paraná, no período de 1976 a 2006. A AFL subdividiu-se em duas etapas: (i) Simulações de Monte Carlo e (ii) Aplicação dos resultados ao banco de dados. O principal resultado das simulações de Monte Carlo foi que os momentos-LH tornam os quantis 0,99 e 0,995 menos enviesados. Além disso, as simulações viabilizaram a criação de um algoritmo para realizar a AFL utilizando as distribuições generalizadas. O algoritmo foi aplicado ao banco de dados e possibilitou ajuste das 227 séries estudadas. Na AFR, as 227 estações foram dividas em 11 grupos e foram obtidas as curvas de crescimento regional. Os quantis locais foram obtidos a partir das curvas de crescimento regional. Foi quantificada a diferença entre os quantis locais obtidos via AFL com aqueles obtidos via AFR. As diferenças podem ser de aproximadamente 33 mm para períodos de retorno de 100 anos.

Page generated in 0.2362 seconds