Spelling suggestions: "subject:"generalized normal distribution"" "subject:"eneralized normal distribution""
1 |
Análise bayesiana objetiva para as distribuições normal generalizada e lognormal generalizadaJesus, Sandra Rêgo de 21 November 2014 (has links)
Made available in DSpace on 2016-06-02T20:04:53Z (GMT). No. of bitstreams: 1
6424.pdf: 5426262 bytes, checksum: 82bb9386f85845b0d3db787265ea8236 (MD5)
Previous issue date: 2014-11-21 / The Generalized Normal (GN) and Generalized lognormal (logGN) distributions are flexible for accommodating features present in the data that are not captured by traditional distribution, such as the normal and the lognormal ones, respectively. These distributions are considered to be tools for the reduction of outliers and for the obtention of robust estimates. However, computational problems have always been the major obstacle to obtain the effective use of these distributions. This paper proposes the Bayesian reference analysis methodology to estimate the GN and logGN. The reference prior for a possible order of the model parameters is obtained. It is shown that the reference prior leads to a proper posterior distribution for all the proposed model. The development of Monte Carlo Markov Chain (MCMC) is considered for inference purposes. To detect possible influential observations in the models considered, the Bayesian method of influence analysis on a case based on the Kullback-Leibler divergence is used. In addition, a scale mixture of uniform representation of the GN and logGN distributions are exploited, as an alternative method in order, to allow the development of efficient Gibbs sampling algorithms. Simulation studies were performed to analyze the frequentist properties of the estimation procedures. Real data applications demonstrate the use of the proposed models. / As distribuições normal generalizada (NG) e lognormal generalizada (logNG) são flexíveis por acomodarem características presentes nos dados que não são capturadas por distribuições tradicionais, como a normal e a lognormal, respectivamente. Essas distribuições são consideradas ferramentas para reduzir as observações aberrantes e obter estimativas robustas. Entretanto o maior obstáculo para a utilização eficiente dessas distribuições tem sido os problemas computacionais. Este trabalho propõe a metodologia da análise de referência Bayesiana para estimar os parâmetros dos modelos NG e logNG. A função a priori de referência para uma possível ordem dos parâmetros do modelo é obtida. Mostra-se que a função a priori de referência conduz a uma distribuição a posteriori própria, em todos os modelos propostos. Para fins de inferência, é considerado o desenvolvimento de métodos Monte Carlo em Cadeias de Markov (MCMC). Para detectar possíveis observações influentes nos modelos considerados, é utilizado o método Bayesiano de análise de influência caso a caso, baseado na divergência de Kullback-Leibler. Além disso, uma representação de mistura de escala uniforme para as distribuições NG e logNG é utilizada, como um método alternativo, para permitir o desenvolvimento de algoritmos de amostrador de Gibbs. Estudos de simulação foram desenvolvidos para analisar as propriedades frequentistas dos processos de estimação. Aplicações a conjuntos de dados reais mostraram a aplicabilidade dos modelos propostos.
|
2 |
Observation error model selection by information criteria vs. normality testingLehmann, Rüdiger 17 October 2016 (has links) (PDF)
To extract the best possible information from geodetic and geophysical observations, it is necessary to select a model of the observation errors, mostly the family of Gaussian normal distributions. However, there are alternatives, typically chosen in the framework of robust M-estimation. We give a synopsis of well-known and less well-known models for observation errors and propose to select a model based on information criteria. In this contribution we compare the Akaike information criterion (AIC) and the Anderson Darling (AD) test and apply them to the test problem of fitting a straight line. The comparison is facilitated by a Monte Carlo approach. It turns out that the model selection by AIC has some advantages over the AD test.
|
3 |
Observation error model selection by information criteria vs. normality testingLehmann, Rüdiger January 2015 (has links)
To extract the best possible information from geodetic and geophysical observations, it is necessary to select a model of the observation errors, mostly the family of Gaussian normal distributions. However, there are alternatives, typically chosen in the framework of robust M-estimation. We give a synopsis of well-known and less well-known models for observation errors and propose to select a model based on information criteria. In this contribution we compare the Akaike information criterion (AIC) and the Anderson Darling (AD) test and apply them to the test problem of fitting a straight line. The comparison is facilitated by a Monte Carlo approach. It turns out that the model selection by AIC has some advantages over the AD test.
|
Page generated in 0.108 seconds