Spelling suggestions: "subject:"análise dde referência bayesian"" "subject:"análise dee referência bayesian""
1 |
Análise de referência Bayesiana para o modelo Weibull na aplicação de riscos competitivosMartins, Camila Bertini 30 January 2009 (has links)
Made available in DSpace on 2016-06-02T20:06:03Z (GMT). No. of bitstreams: 1
2312.pdf: 3218966 bytes, checksum: 1a1fbdff559e9170510e381fd4af4328 (MD5)
Previous issue date: 2009-01-30 / Universidade Federal de Minas Gerais / There are situations where various risk factors of failure are present, in the same time, in the life of system. For this reason we say that these factors are competing to cause the system failure. However, only one of these competitors is responsible for the system failure. The failure behavior of one system is, in most times, represented for its failure rate, which may be increasing, decreasing, remain constant or be combinations of these over time. Therefore it is desirable to use a probabilistic model that only with changes in the values of the parameters representing each of these situations. In this work we studied from the perspective of Bayesian reference analysis to the application of competitive risks under the Weibull model due to high flexibility of this model. The reference analysis is a method to produce Bayesian inferential statements which only depend on the assumed model and the available data (Bernardo, 1979). The goal is to find a specific joint reference prior function for all the unknown parameters of Weibull model in the application of competitive risks and a marginal reference posterior to the parameters of interest, which is always dominated by the observed data. The reference posterior distributions are obtained through the use of the Bayes theorem with the reference prior function that can be used to point estimates and tests of hypotheses, providing a unified set of Bayesian objective solutions for our problem. / H´a situa¸c oes em que existem diversos fatores de risco de falha presentes ao mesmo tempo na vida de um sistema. Por essa raz ao, dizemos que esses fatores est ao competindo para provocar a falha do mesmo. Entretanto, apenas um desses competidores ´e o respons´avel por determinada falha. O comportamento dessa falha ´e, na maioria das vezes, representado pela sua taxa de falha, que pode ser crescente, decrescente, constante ou fruto de suas combina¸c oes ao longo do tempo. Assim, ´e desej´avel o uso de um modelo probabil´ıstico que represente cada uma dessas situa¸c oes, apenas com mudan¸cas nos valores dos seus par ametros. Neste trabalho, estudamos, sob a perspectiva de an´alise de refer encia Bayesiana, a aplica¸c ao de riscos competitivos a partir do modeloWeibull, considerado bastante flex´ıvel. A an´alise de refer encia Bayesiana ´e um m´etodo de produzir afirma¸c oes inferenciais que dependem apenas do modelo assumido e dos dados observados (Bernardo, 1979). O objetivo ´e encontrar uma espec´ıfica fun¸c ao a priori de refer encia conjunta para os par ametros desconhecidos do modelo Weibull na aplica¸c ao de riscos competitivos e uma distribui¸c ao a posteriori de refer encia marginal para os par ametros de interesse, a qual ser´a dominada pelos dados observados. As distribui¸c oes a posteriori de refer encia s ao obtidas atrav´es do uso formal do teorema de Bayes com a fun¸c ao a priori de refer encia, podendo ser utilizadas para estima¸c oes pontuais e testes de hip´oteses, proporcionando um conjunto unificado de solu¸c oes Bayesianas objetivas para o nosso problema.
|
2 |
Análise bayesiana objetiva para as distribuições normal generalizada e lognormal generalizadaJesus, Sandra Rêgo de 21 November 2014 (has links)
Made available in DSpace on 2016-06-02T20:04:53Z (GMT). No. of bitstreams: 1
6424.pdf: 5426262 bytes, checksum: 82bb9386f85845b0d3db787265ea8236 (MD5)
Previous issue date: 2014-11-21 / The Generalized Normal (GN) and Generalized lognormal (logGN) distributions are flexible for accommodating features present in the data that are not captured by traditional distribution, such as the normal and the lognormal ones, respectively. These distributions are considered to be tools for the reduction of outliers and for the obtention of robust estimates. However, computational problems have always been the major obstacle to obtain the effective use of these distributions. This paper proposes the Bayesian reference analysis methodology to estimate the GN and logGN. The reference prior for a possible order of the model parameters is obtained. It is shown that the reference prior leads to a proper posterior distribution for all the proposed model. The development of Monte Carlo Markov Chain (MCMC) is considered for inference purposes. To detect possible influential observations in the models considered, the Bayesian method of influence analysis on a case based on the Kullback-Leibler divergence is used. In addition, a scale mixture of uniform representation of the GN and logGN distributions are exploited, as an alternative method in order, to allow the development of efficient Gibbs sampling algorithms. Simulation studies were performed to analyze the frequentist properties of the estimation procedures. Real data applications demonstrate the use of the proposed models. / As distribuições normal generalizada (NG) e lognormal generalizada (logNG) são flexíveis por acomodarem características presentes nos dados que não são capturadas por distribuições tradicionais, como a normal e a lognormal, respectivamente. Essas distribuições são consideradas ferramentas para reduzir as observações aberrantes e obter estimativas robustas. Entretanto o maior obstáculo para a utilização eficiente dessas distribuições tem sido os problemas computacionais. Este trabalho propõe a metodologia da análise de referência Bayesiana para estimar os parâmetros dos modelos NG e logNG. A função a priori de referência para uma possível ordem dos parâmetros do modelo é obtida. Mostra-se que a função a priori de referência conduz a uma distribuição a posteriori própria, em todos os modelos propostos. Para fins de inferência, é considerado o desenvolvimento de métodos Monte Carlo em Cadeias de Markov (MCMC). Para detectar possíveis observações influentes nos modelos considerados, é utilizado o método Bayesiano de análise de influência caso a caso, baseado na divergência de Kullback-Leibler. Além disso, uma representação de mistura de escala uniforme para as distribuições NG e logNG é utilizada, como um método alternativo, para permitir o desenvolvimento de algoritmos de amostrador de Gibbs. Estudos de simulação foram desenvolvidos para analisar as propriedades frequentistas dos processos de estimação. Aplicações a conjuntos de dados reais mostraram a aplicabilidade dos modelos propostos.
|
Page generated in 0.1158 seconds