Spelling suggestions: "subject:"generativa motståndsnätverk (GAN)"" "subject:"generativa motståndsnätverket (GAN)""
1 |
Geospatial Trip Data Generation Using Deep Neural Networks / Generering av Geospatiala Resedata med Hjälp av Djupa Neurala NätverkDeepak Udapudi, Aditya January 2022 (has links)
Development of deep learning methods is dependent majorly on availability of large amounts of high quality data. To tackle the problem of data scarcity one of the workarounds is to generate synthetic data using deep learning methods. Especially, when dealing with trajectory data there are added challenges that come in to the picture such as high dependencies of the spatial and temporal component, geographical context sensitivity, privacy laws that protect an individual from being traced back to them based on their mobility patterns etc. This project is an attempt to overcome these challenges by exploring the capabilities of Generative Adversarial Networks (GANs) to generate synthetic trajectories which have characteristics close to the original trajectories. A naive model is designed as a baseline in comparison with a Long Short Term Memorys (LSTMs) based GAN. GANs are generally associated with image data and that is why Convolutional Neural Network (CNN) based GANs are very popular in recent studies. However, in this project an LSTM-based GAN was chosen to work with in order to explore its capabilities and strength of handling long-term dependencies sequential data well. The methods are evaluated using qualitative metrics of visually inspecting the trajectories on a real-world map as well as quantitative metrics by calculating the statistical distance between the underlying data distributions of the original and synthetic trajectories. Results indicate that the baseline method implemented performed better than the GAN model. The baseline model generated trajectories that had feasible spatial and temporal components, whereas the GAN model was able to learn the spatial component of the data well and not the temporal component. Conditional map information could be added as part of training the networks and this can be a research question for future work. / Utveckling av metoder för djupinlärning är till stor del beroende av tillgången på stora mängder data av hög kvalitet. För att ta itu med problemet med databrist är en av lösningarna att generera syntetisk data med hjälp av djupinlärning. Speciellt när man hanterar bana data finns det ytterligare utmaningar som kommer in i bilden såsom starka beroenden av den rumsliga och tidsmässiga komponenten, geografiska känsliga sammanhang, samt integritetslagar som skyddar en individ från att spåras tillbaka till dem baserat på deras mobilitetsmönster etc. Detta projekt är ett försök att överkomma dessa utmaningar genom att utforska kapaciteten hos generativa motståndsnätverk (GAN) för att generera syntetiska banor som har egenskaper nära de ursprungliga banorna. En naiv modell är utformad som en baslinje i jämförelse med en LSTM-baserad GAN. GAN:er är i allmänhet förknippade med bilddata och det är därför som CNN-baserade GAN:er är mycket populära i nya studier. I det här projektet valdes dock en LSTM-baserad GAN att arbeta med för att utforska dess förmåga och styrka att hantera långsiktiga beroenden och sekventiella data på ett bra sätt. Metoderna utvärderas med hjälp av kvalitativa mått för att visuellt inspektera banorna på en verklig världskarta samt kvantitativa mått genom att beräkna det statistiska avståndet mellan de underliggande datafördelningarna för de ursprungliga och syntetiska banorna. Resultaten indikerar att den implementerade baslinjemetoden fungerade bättre än GAN-modellen. Baslinjemodellen genererade banor som hade genomförbara rumsliga och tidsmässiga komponenter, medan GAN-modellen kunde lära sig den rumsliga komponenten av data väl men inte den tidsmässiga komponenten. Villkorskarta skulle kunna läggas till som en del av träningen av nätverken och detta kan vara en forskningsfråga för framtida arbete.
|
Page generated in 0.0887 seconds