• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particionamento de processos lógicos em simulação distribuída utilizando algoritmo genético\" / Logical process partitioning in distributed simulation using genetic algorithmic

Silva, Michel Pires da 14 February 2006 (has links)
Esta dissertação tem por objetivo apresentar uma abordagem baseada em técnicas de inteligência artificial para automatizar a etapa de particionamento de modelos em simulação distribuída. Essa abordagem utiliza os conceitos da computação evolutiva para o desenvolvimento de um algoritmo genético capaz de otimizar o processo de particionamento e auxiliar a tomada de decisões na tarefa de obtenção dos processos lógicos. Objetiva-se com sua aplicação minimizar o tempo de execução da simulação distribuída, evitando que o pior tempo de execução seja utilizado. Para alcançar esse objetivo, o particionamento apresentado como solução é caracterizado pelo balanceamento de carga e pela baixa latência de comunicação entre processos. Isso é possível porque o algoritmo genético utiliza informações contidas no modelo e na arquitetura de onde a simulação será executada. Esses padrões são utilizados para obter informações sobre a comunicação entre processos, a carga de processamento por centro de serviço e a capacidade de processamento das máquinas / This dissertation presents an approach based on intelligence artificial technics to automatize the model partitioning stage in distributed simulation. This approach makes uses evolutive computing concepts to developed a genetic algorithmic that can optimize the partitioning process and help to take decisions in the task to get the logical process. The propose of this algorithm is reduce to execution time the distributed simulation and to avoid the use of the worst execution time. To reach this target, the partitioning obtained has characteristics such as load balance and the low-communication interprocess. This is possible because the genetic algorithmic uses as input information from the model and the architect where the simulation with be executed. These inputs are used to get information about the interprocess communication, processing load per service center and processing capacity in the machines
2

Particionamento de processos lógicos em simulação distribuída utilizando algoritmo genético\" / Logical process partitioning in distributed simulation using genetic algorithmic

Michel Pires da Silva 14 February 2006 (has links)
Esta dissertação tem por objetivo apresentar uma abordagem baseada em técnicas de inteligência artificial para automatizar a etapa de particionamento de modelos em simulação distribuída. Essa abordagem utiliza os conceitos da computação evolutiva para o desenvolvimento de um algoritmo genético capaz de otimizar o processo de particionamento e auxiliar a tomada de decisões na tarefa de obtenção dos processos lógicos. Objetiva-se com sua aplicação minimizar o tempo de execução da simulação distribuída, evitando que o pior tempo de execução seja utilizado. Para alcançar esse objetivo, o particionamento apresentado como solução é caracterizado pelo balanceamento de carga e pela baixa latência de comunicação entre processos. Isso é possível porque o algoritmo genético utiliza informações contidas no modelo e na arquitetura de onde a simulação será executada. Esses padrões são utilizados para obter informações sobre a comunicação entre processos, a carga de processamento por centro de serviço e a capacidade de processamento das máquinas / This dissertation presents an approach based on intelligence artificial technics to automatize the model partitioning stage in distributed simulation. This approach makes uses evolutive computing concepts to developed a genetic algorithmic that can optimize the partitioning process and help to take decisions in the task to get the logical process. The propose of this algorithm is reduce to execution time the distributed simulation and to avoid the use of the worst execution time. To reach this target, the partitioning obtained has characteristics such as load balance and the low-communication interprocess. This is possible because the genetic algorithmic uses as input information from the model and the architect where the simulation with be executed. These inputs are used to get information about the interprocess communication, processing load per service center and processing capacity in the machines
3

DEVELOPMENT OF AN OPEN-SOURCE TOOLBOX FOR DESIGN AND ANALYSIS OF ACTIVE DEBRIS REMEDIATION ARCHITECTURES

Joshua David Fitch (16360641) 15 June 2023 (has links)
<p> Orbital Debris is a growing challenge for the Space Industry. The increasing density of derelict objects in high-value orbital regimes is resulting in more conjunction warnings and break-up events with cascading repercussions on active satellites and spacecraft. The recent rapid growth of the commercial space industry, in particular proliferated satellite constellations, has placed orbital debris remediation at the forefront of Space Industry efforts. The need to remove existing debris, combined with a growing demand for active satellite life extension services, has created an emerging market for space logistics, in particular spacecraft capable of rendezvous and docking, orbital refueling, debris deorbiting, or object relocation. This market has seen numerous companies emerge with multi-purpose on-orbit servicing platforms. This ecosystem poses technological, economical, and policy questions to decision-makers looking to acquire platforms or invest in technologies and requires a System-of-Systems approach to determine mission and system concepts of merit. An open-source modeling, analysis, and simulation software toolbox has been developed which enables rapid early-stage analysis and design of diverse fleets of on-orbit servicing platforms, with a specific emphasis on active debris removal applications. The toolbox provides fetching and processing of real-time orbital catalog data, clustering and scoring of high-value debris targets, flexible and efficient multi-vehicle multi-objective time-varying routing optimization, and fleet-level lifecycle cost estimation. The toolbox is applied to a diverse sample of promising commercial platforms to enable government decision-makers to make sound investment and acquisition decisions to support the development of ADR technologies, missions, and companies. </p>

Page generated in 0.0772 seconds