• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular study of the terminal differentiation of WEHI-3B JCS myeloid leukemia cell induced by biochanin A.

January 1998 (has links)
by Yip Mei Chu Pandora. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 207-233). / Abstract also in Chinese. / STATEMENT --- p.i / ACKNOWLEDGEMENTS --- p.ii / ABSTRACT --- p.iii / ABSTRACT (CHINESE VERSION) --- p.v / TABLE OF CONTENTS --- p.vii / ABBREVIATIONS --- p.xiii / LIST OF FIGURES AND TABLES --- p.xvii / Chapter CHAPTER ONE ... --- GENERAL INTRODUCTION / Chapter 1.1 --- the blood cells formation - hematopoiesis --- p.1 / Chapter 1.1.1 --- Hierarchy of hematopoiesis --- p.2 / Chapter 1.1.2 --- Malfunction in the process of hematopoiesis - hematologic neoplasia - Leukemia --- p.6 / Chapter 1.1.2.1 --- Classification of leukemia --- p.7 / Chapter 1.1.2.2 --- Differentiation therapy ´ؤ a new hope in the treatment of leukemia --- p.9 / Chapter 1.2 --- Understanding the pathogenesis of leukemia --- p.12 / Chapter 1.2.1 --- General regulation of hematopoiesis --- p.12 / Chapter 1.2.2 --- Regulation of the differentiation of myeloid lineage --- p.15 / Chapter 1.2.2.1 --- Regulation of myeloid cell differentiation by hematopoietic regulatory protein --- p.16 / Chapter 1.2.2.2 --- Signal transduction pathways in myeloid cell differentiation --- p.20 / Chapter 1.2.2.3 --- Gene regulation of myeloid cell differentiation --- p.22 / Chapter 1.2.2.3.1 --- Transcription factors --- p.23 / Chapter 1.2.2.3.2 --- Myeloid specific genes --- p.31 / Chapter 1.2.2.3.3 --- Protooncogenes and tumor suppressor genes --- p.37 / Chapter 1.2.2.3.4 --- Homeobox genes --- p.42 / Chapter 1.2.2.3.5 --- Cell cycle control in myeloid growth and differentiation --- p.47 / Chapter 1.3 --- Induction of differentiation in myeloid leukemia cell --- p.48 / Chapter 1.3.1 --- Induced myeloid leukemia cell differentiation --- p.48 / Chapter 1.3.2 --- Inducers of myeloid cell differentiation --- p.52 / Chapter 1.3.3 --- Chemical inducers ´ؤ Flavonoids --- p.57 / Chapter 1.3.4 --- Murine myeloid leukemia cell ´ؤ WEHI-3B JCS --- p.60 / Chapter 1.4 --- Aim of study --- p.53 / Chapter CHAPTER TWO ... --- ISOLATION OF GENES THAT ARE DIFFERENTIALLY EXPRESSED DURING BIOCHANIN A INDUCED WEHI-3B (JCS) MYELOID LEUKEMIA CELL DIFFERENTIATION / Chapter 2.1 --- Introduction --- p.65 / Chapter 2.1.1 --- Strategy for searching differentially expressed genes - RNA fingerprinting by arbitrarily primed polymerase chain reaction (RAP- PCR) --- p.65 / Chapter 2.1.2 --- Reamplification of PCR products by Touchdown PCR --- p.67 / Chapter 2.1.3 --- Methods for eliminating false positives : Dot blot hybridization screening --- p.68 / Chapter 2.2 --- Materials --- p.70 / Chapter 2.2.1 --- "Cell line, Bacterial strain and Vector" --- p.70 / Chapter 2.2.2 --- Chemicals --- p.70 / Chapter 2.2.3 --- Reagents and nucleic acids --- p.71 / Chapter 2.2.4 --- Kits --- p.72 / Chapter 2.2.5 --- Solutions --- p.72 / Chapter 2.2.6 --- Equipments --- p.73 / Chapter 2.3 --- Methods --- p.74 / Chapter 2.3.1 --- Induction of murine myeloid leukemia cell line -WEHI-3B (JCS) cells by biochanin-A --- p.74 / Chapter 2.3.2 --- Isolation of total RNA by guanidium thiocyanate cesium chloride ultracentrifugation --- p.74 / Chapter 2.3.3 --- RNA fingerprinting by arbitrarily primed PCR --- p.75 / Chapter 2.3.3.1 --- Synthesis of first strand cDNA --- p.75 / Chapter 2.3.3.2 --- Normalization of RNA samples --- p.75 / Chapter 2.3.3.3 --- RAP-PCR --- p.76 / Chapter 2.3.3.4 --- Reamplification of differentially amplified fragment --- p.77 / Chapter 2.3.4 --- First round dot blot hybridization screening --- p.78 / Chapter 2.3.4.1 --- Dot blot --- p.78 / Chapter 2.3.4.2 --- Preparation of cDNA probe --- p.79 / Chapter 2.3.4.3 --- 32P-labelling of cDNA probe --- p.79 / Chapter 2.3.4.4 --- Removal of unincorporated probe by NICK´ёØ column --- p.80 / Chapter 2.3.4.5 --- Estimation of 32P labelling efficiency by scintillation counting --- p.80 / Chapter 2.3.4.6 --- Prehybridization and hybridization --- p.81 / Chapter 2.3.4.7 --- Quantitation of hybridization signal by scanning densitometry --- p.81 / Chapter 2.3.5 --- Second round dot blot hybridization screening --- p.81 / Chapter 2.3.5.1 --- Subcloning of differentially amplified fragments --- p.82 / Chapter 2.3.5.1.1 --- Preparation of vector DNA --- p.82 / Chapter 2.3.5.1.2 --- Synthesis of blunt end PCR product --- p.84 / Chapter 2.3.5.1.3 --- Blunt end ligation --- p.34 / Chapter 2.3.5.1.4 --- Transformation --- p.85 / Chapter 2.3.5.1.5 --- Selection and confirmation by polymerase chain reaction --- p.85 / Chapter 2.3.5.2 --- Dot blot hybridization screening --- p.85 / Chapter 2.4 --- Results --- p.87 / Chapter 2.4.1 --- Spectrophotometric analysis of total RNA --- p.87 / Chapter 2.4.2 --- Normalization of RNA samples --- p.88 / Chapter 2.4.3 --- RNA fingerprinting by arbitrarily primed PCR --- p.39 / Chapter 2.4.4 --- Reamplification of isolated RAP-PCR products --- p.91 / Chapter 2.4.5 --- First round of dot blot hybridization screening --- p.92 / Chapter 2.4.6 --- Subcloning of differentially amplified fragments --- p.100 / Chapter 2.4.7 --- Second round of dot blot hybridization screening --- p.102 / Chapter 2.4.8 --- Comparison of the first and second round of dot blot hybridization screening --- p.106 / Chapter 2.5 --- Discussion --- p.108 / Chapter 2.5.1 --- RNA fingerprinting by arbitrarily primed PCR --- p.108 / Chapter 2.5.2 --- Limitation of RAP-PCR --- p.110 / Chapter 2.5.3 --- Two rounds of dot blot hybridization screening --- p.111 / Chapter CHAPTER THREE... --- CHARACTERIZATION OF THE ISOLATED GENE FRAGMENTS / Chapter 3.1 --- Introduction --- p.113 / Chapter 3.1.1 --- Automated DNA sequencing and analysis --- p.113 / Chapter 3.1.2 --- GenBank and the BLAST homology search --- p.115 / Chapter 3.2 --- Materials --- p.118 / Chapter 3.2.1 --- Selected recombinant plasmids --- p.118 / Chapter 3.2.2 --- Chemicals --- p.118 / Chapter 3.2.3 --- Reagents --- p.118 / Chapter 3.2.4 --- Kits --- p.119 / Chapter 3.2.5 --- Solutions --- p.119 / Chapter 3.2.6 --- Equipment --- p.119 / Chapter 3.3 --- Methods --- p.120 / Chapter 3.3.1 --- Preparation of selected recombinant plasmid DNA --- p.120 / Chapter 3.3.2 --- Restriction digestion of recombinant plasmid DNA --- p.120 / Chapter 3.3.3 --- Automated DNA sequencing --- p.120 / Chapter 3.3.3.1 --- Primer annealing to template --- p.120 / Chapter 3.3.3.2 --- Sequencing reactions --- p.121 / Chapter 3.3.3.3 --- Polyacrylamide gel electrophoresis --- p.121 / Chapter 3.3.3.4 --- Data analysis by ALF manager and DNAsis --- p.122 / Chapter 3.3.4 --- Sequence homology search with databases --- p.122 / Chapter 3.4 --- Results --- p.123 / Chapter 3.4.1 --- Spectrophotometric analysis of selected recombinant plasmid DNAs subcloned with differentially amplified fragments --- p.123 / Chapter 3.4.2 --- Restriction digestion of selected recombinant plasmid DNA --- p.124 / Chapter 3.4.3 --- Sequences of the subcloned differentially amplified fragments --- p.126 / Chapter 3.4.4 --- Sequence analysis of the subcloned differentially amplified fragments --- p.144 / Chapter 3.5 --- Discussion --- p.157 / Chapter 3.5.1 --- Sequence analysis of the isolated gene fragment --- p.157 / Chapter CHAPTER FOUR … --- "EXPRESSION PROFILE OF ISOLATED GENES FRAGMENTS IN MYELOID LEUKEMIA CELL, MOUSE EMBRYO, AND TISSUES" / Chapter 4.1 --- Introduction --- p.162 / Chapter 4.1.1 --- Quantitation of mRNA by Reverse transcription-polymerase chain reaction --- p.162 / Chapter 4.1.2 --- Internal primer design by OLIGO´ёØ ver 34 --- p.167 / Chapter 4.2 --- Materials --- p.168 / Chapter 4.2.1 --- Mice --- p.168 / Chapter 4.2.2 --- Cell lysate --- p.168 / Chapter 4.2.3 --- Total RNAs --- p.168 / Chapter 4.3 --- Methods --- p.169 / Chapter 4.3.1 --- Internal primer design by OLIGO´ёØ ver 34 --- p.169 / Chapter 4.3.2 --- "Isolation of total RNA from biochanin A induced JCS cells, mouse embryos and tissue" --- p.169 / Chapter 4.3.2.1 --- Preparation of cell lysate from mouse embryo and postnatal mouse brain --- p.169 / Chapter 4.3.2.2 --- Isolation of RNA by guanidium thiocyanate cesium chloride method --- p.170 / Chapter 4.3.3 --- Preparation of saggital section of mouse embryo --- p.170 / Chapter 4.3.4 --- Confirmation of differential expression of isolated genes fragments during biochanin A and midazolam induced WEHI 3B (JCS) differentiation and the expression profile in mouse tissues and during mouse embryo development by reverse transcription-polymerase chain reaction --- p.171 / Chapter 4.4 --- Results --- p.173 / Chapter 4.4.1 --- Internal primer design of the sequenced fragments --- p.173 / Chapter 4.4.2 --- Spectrophotometric analysis of total RNA --- p.175 / Chapter 4.4.3 --- Saggital section of mouse embryo --- p.176 / Chapter 4.4.4 --- Normalization of RNA samples --- p.180 / Chapter 4.4.5 --- Analysis of mRNA expression of differentially amplified fragmentsin biochanin A or midazolam induced JCS cells and mouse embryos by RT- PCR --- p.182 / Chapter 4.4.5.1 --- "Genes downregulated at 1 hour, 5 hours and 48 hours after biochanin A induction of JCS cells" --- p.183 / Chapter 4.4.5.2 --- Genes up-regulated at 48 hours after biochanin A induction --- p.183 / Chapter 4.4.5.3 --- Genes constitutively expressed during the course of biochanin A treatment --- p.184 / Chapter 4.4.5.4 --- Genes showing undetectable level of expression in biochanin A induced JCS cells --- p.184 / Chapter 4.4.6 --- Tissue expression of the biochanin A induced-differentially expressed fragments by RT-PCR --- p.188 / Chapter 4.5 --- Discussion --- p.191 / Chapter 4.5.1 --- Expression profiles of isolated differentially amplified fragments --- p.191 / Chapter 4.5.2 --- Comparison of the expression profiles of the isolated gene fragments analyzed by dot blot hybridization screening and RT-PCR --- p.197 / Chapter CHAPTER FIVE ... --- GENERAL DISCUSSION --- p.200 / REFERENCES --- p.207 / APPENDIX --- p.234
2

Molecular analysis of WEHI-3B JCS myeloid leukemia cell differentiation induced by biochanin A and midazolam.

January 1996 (has links)
by Szeto Yuk Yee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 257-283). / Statement --- p.iii / Acknowledgments --- p.iv / Abbreviations --- p.vi / Abstract --- p.ix / Contents --- p.xi / Chapter Chapter One --- General Introduction / Chapter 1.1 --- Hematopoies --- p.is / Chapter 1.1.1 --- Ontogeny of the hematopoietic system --- p.1 / Chapter 1.1.2 --- Hierarchy of hematopoietic cells --- p.3 / Chapter 1.1.3 --- Characteristics of a functional blood system and the need for regulation --- p.11 / Chapter 1.1.4 --- Interrupted hematopoiesis -- Leukemia --- p.13 / Chapter 1.2 --- Regulation of myeloid cell differentiation / Chapter 1.2.1 --- Regulation of hematopoiesis --- p.16 / Chapter 1.2.2 --- Models of hematopoiesis --- p.18 / Chapter 1.2.3 --- Genes regulation of myeloid cell differentiation and its study --- p.21 / Chapter 1.2.4 --- Genes differentially expressed and involved in myeloid cell differentiation --- p.24 / Chapter 1.3 --- Induced myeloid cell differentiation / Chapter 1.3.1 --- Induced myeloid cell differentiation --- p.46 / Chapter 1.3.2 --- WEHI-3B JCS cells --- p.48 / Chapter 1.3.3 --- Chemical inducers -- Flavonoids and benzodiazepines --- p.51 / Chapter 1.4 --- The aim of study --- p.59 / Chapter Chapter Two --- Cytokine Expression in Biochanin A- and Midazolam-treated JCS cells / Chapter 2.1 --- Introduction / Chapter 2.1.1 --- Cytokine and myeloid differentiation --- p.62 / Chapter 2.1.2 --- Phenotypic studies biochanin A- and midazolam-treated JCS cells --- p.65 / Chapter 2.1.3 --- Cytokine regulation at transcriptional level --- p.68 / Chapter 2.1.4 --- Cytokine mRNA phenotyping by a semi-quantitative approach --- p.69 / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Cell line --- p.72 / Chapter 2.2.2 --- Chemicals and buffers --- p.72 / Chapter 2.2.3 --- DIG system --- p.73 / Chapter 2.2.4 --- Enzymes and nucleic acids --- p.73 / Chapter 2.2.5 --- Solutions --- p.74 / Chapter 2.3 --- Methods / Chapter 2.3.1 --- Isolation of total RNA by guanidinium thiocyanate/cesium chloride isopycnic gradient --- p.75 / Chapter 2.3.2 --- Reverse-transcription polymerase chain reaction (RT-PCR) --- p.76 / Chapter 2.3.3 --- Southern blotting --- p.79 / Chapter 2.3.4 --- Cycle titration and dot blotting --- p.79 / Chapter 2.3.5 --- DIG 3' end labeling of probes --- p.81 / Chapter 2.3.6 --- Hybridization and stringency wash --- p.81 / Chapter 2.3.7 --- Chemiluminescent detection --- p.82 / Chapter 2.3.8 --- Quantitation by densitometry --- p.82 / Chapter 2.4 --- Results / Chapter 2.4.1 --- Analysis of total RNA --- p.83 / Chapter 2.4.2 --- mRNA phenotyping --- p.85 / Chapter 2.4.3 --- Summary of mRNA phenotyping results --- p.98 / Chapter 2.5 --- Discussion / Chapter 2.5.1 --- mRNA phenotyping --- p.100 / Chapter 2.5.2 --- Cytokine gene regulation --- p.106 / Chapter 2.5.3 --- mRNA quantitation using the current method --- p.108 / Chapter Chapter Three --- Identification and Isolation of Genes that are Differentially Expressed during Midazolam-induced JCS Cell Differentiation / Chapter 3.1 --- Introduction / Chapter 3.1.1 --- Methods for studying differentially expressed genes --- p.110 / Chapter 3.1.2 --- RNA fingerprinting by arbitrarily-primed PCR (RAP-PCR) and differential display (DDRT-PCR) --- p.113 / Chapter 3.1.3 --- Re-amplification of PCR products by touchdown PCR --- p.118 / Chapter 3.1.4 --- Strategies to avoid false positives --- p.119 / Chapter 3.2 --- Materials / Chapter 3.2.1 --- Cell line and bacterial culture --- p.121 / Chapter 3.2.2 --- Chemicals --- p.121 / Chapter 3.2.3 --- Enzymes and nucleic acids --- p.122 / Chapter 3.2.4 --- Kits --- p.122 / Chapter 3.2.5 --- Solutions --- p.122 / Chapter 3.3 --- Methods / Chapter 3.3.1 --- Isolation of total RNA --- p.124 / Chapter 3.3.2 --- First strand cDNA synthesis --- p.124 / Chapter 3.3.3 --- RNA fingerprinting by arbitrarily-primed PCR --- p.124 / Chapter 3.3.4 --- First round cDNA probe screening --- p.126 / Chapter 3.3.5 --- Subcloning of differentially amplified fragments --- p.129 / Chapter 3.3.6 --- Second round cDNA probe screening --- p.133 / Chapter 3.4 --- Results / Chapter 3.4.1 --- Spectrophotometric analysis of total RNA --- p.134 / Chapter 3.4.2 --- Normalization of samples --- p.135 / Chapter 3.4.3 --- RNA fingerprinting of arbitrarily-primed PCR --- p.136 / Chapter 3.4.4 --- Re-amplification of PCR products --- p.138 / Chapter 3.4.5 --- First round cDNA probe screening --- p.139 / Chapter 3.4.6 --- Subcloning of the differentially amplified fragments --- p.143 / Chapter 3.4.7 --- Second round cDNA probe screening --- p.145 / Chapter 3.4.8 --- A comparison of the first and second screening --- p.149 / Chapter 3.5 --- Discussion / Chapter 3.5.1 --- Towards the steps to isolate differentially expressed genes --- p.151 / Chapter 3.5.2 --- Expression profiles predicted at different stage of the procedures --- p.156 / Chapter 3.5.3 --- Representation of the total mRNA in the cell --- p.158 / Chapter 3.3.4 --- Comparison of the original and modified protocol of RAP-PCR --- p.159 / Chapter 3.3.5 --- Advantages of the modified protocol and further refinements --- p.163 / Chapter Chapter Four --- Characterization of the Putative Differentially Expressed Genesin Midazolam-induced JCS cells / Chapter 4.1 --- Introduction / Chapter 4.1.1 --- DNA sequencing --- p.165 / Chapter 4.1.2 --- Automated DNA sequencing and analysis --- p.168 / Chapter 4.1.3 --- Genbank and BLAST homology search --- p.171 / Chapter 4.1.4 --- Internal primer design for RT-PCR --- p.174 / Chapter 4.1.5 --- Genes involved in both myeloid cell differentiation and embryonic development --- p.177 / Chapter 4.2 --- Materials / Chapter 4.2.1 --- Selected recombinant plasmids --- p.180 / Chapter 4.4.2 --- Total RNAs --- p.180 / Chapter 4.2.3 --- Chemicals --- p.180 / Chapter 4.2.4 --- Enzymes and nucleic acids --- p.181 / Chapter 4.2.5 --- Kits --- p.181 / Chapter 4.2.6 --- Solutions --- p.181 / Chapter 4.3 --- Methods / Chapter 4.3.1 --- Preparation of selected recombinant plasmid DNA --- p.182 / Chapter 4.3.2 --- Sequencing --- p.182 / Chapter 4.3.3 --- Data analysis and assessment by ALF manager and DNAsis --- p.184 / Chapter 4.3.4 --- Sequence search by BLASTN program --- p.185 / Chapter 4.3.5 --- Primer design by Oligo´ёØ ver. 34 --- p.186 / Chapter 4.3.6 --- Differential expression confirmed by RT-PCR --- p.186 / Chapter 4.4 --- Results / Chapter 4.4.1 --- Analysis of selected recombinant plasmid DNA --- p.187 / Chapter 4.4.2 --- Sequencing results --- p.191 / Chapter 4.4.3 --- BLASTN search results --- p.212 / Chapter 4.4.4 --- Primer design of the sequenced fragments --- p.222 / Chapter 4.4.5 --- "Expression profile of the isolated genes in midazolam-, biochanin A- induced JCS cells and mouse embryos" --- p.223 / Chapter 4.5 --- Discussion / Chapter 4.5.1 --- Sequence analysis of the isolated gene fragments --- p.233 / Chapter 4.5.2 --- Expression profiles of the isolated genes --- p.236 / Chapter Chapter Five --- General Discussion / Chapter 5.1 --- Studies on leukemic cell differentiation / Chapter 5.1.1 --- Differentiation pathways revealed by different inducers --- p.241 / Chapter 5.1.2 --- Lineage preference during differentiation --- p.243 / Chapter 5.2 --- Differentiation program triggered by midazolam / Chapter 5.2.1 --- Signaling pathways initiated by biochanin A and midazolam --- p.245 / Chapter 5.2.2 --- Differentially expressed genes during midazolam-induced differentiation --- p.247 / Chapter 5.2.3 --- Expression patterns of the isolated differentially expressed genesin midazolam and biochanin A-induced JCS cells --- p.248 / Chapter 5.2.4 --- Myeloid genes in embryonic development --- p.250 / Chapter 5.3 --- Future studies of the isolated fragments --- p.252 / Chapter 5.4 --- Conclusion --- p.256 / Reference --- p.257 / Append --- p.ix / Chapter A1. --- Ambiguity codes for sequencing --- p.i / Chapter A2. --- Myeloid cell lines --- p.ii / Chapter A3. --- Details of manufacturer's products --- p.iii / Chapter A4. --- List of machine and equipment --- p.v

Page generated in 0.0761 seconds