• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evolution of 3D Chromatin Architecture: the Role of CTCF Across Taxa

Astica, Liene 07 November 2023 (has links)
Die Anordnung von Tiergenomen in topologisch assoziierten Domänen (TADs) spielt eine entscheidende Rolle bei der Regulation von Genen. Diese TADs sind Bereiche mit erhöhter Interaktion, die durch kontaktarme Zonen getrennt sind. In Wirbeltieren erfolgt die Bildung von TADs durch die Bindung von Kohäsin und CTCF (CCCTC-bindender Faktor) im Rahmen eines dynamischen Prozesses namens Loop-Extrusion. Dieser Prozess erzeugt Chromatinschleifen, die gestoppt werden, wenn sie auf CTCF-Proteine in einer spezifischen Ausrichtung treffen. Obwohl CTCF in den meisten Bilaterien stark konserviert ist, wurde seine globale architektonische Funktion in Fliegen bisher nicht erforscht. In dieser Studie wurde ein innovativer Ansatz entwickelt, um die evolutionären Aspekte der CTCF-vermittelten 3D-Chromatinorganisation zu untersuchen. Die Auswirkungen des Austauschs von CTCF-Orthologen innerhalb der Bilateriengruppe auf Lebensfähigkeit, Phänotypen, Genexpression, Genomarchitektur und genomweite Bindungsmuster wurden analysiert. Die Ergebnisse zeigen, dass die nicht-vertebraten Chordatiere C. robusta, unabhängig von der Anwesenheit von CTCF, keine herkömmlichen TAD-Strukturen aufweisen. Dennoch kann das Ciona-Ortholog als Transkriptionsfaktor fungieren, um die Expression bestimmter Gene und die Lebensfähigkeit wiederherzustellen, die bei vollständigem CTCF-Verlust in embryonalen Stammzellen der Maus dysreguliert sind. Dies deutet darauf hin, dass CTCF eine konservierte Rolle als Transkriptionsregulator hat, die über seine bekannte Funktion als architektonisches Protein in einigen Arten hinausgeht. Weitere Untersuchungen sind erforderlich, um festzustellen, ob CTCF in Ciona das Genom in seiner nativen Umgebung bindet und die Bindung von Kohäsin aufrechterhält. Die Unfähigkeit des CTCF-Orthologs der Maus, Chromatinschleifen im Genom der Fruchtfliege zu erzeugen, legt nahe, dass die Wirbeltier-Version von CTCF allein nicht für eine funktionelle Schleifen-Extrusion ausreicht. Es könnte notwendig sein, dass sie mit Fliegen-Kohäsin oder spezifischen Kofaktoren kompatibel ist. Die Studie zeigt auch subtile Unterschiede in den Bindungsmotiven von CTCF zwischen den Arten. Während die Orthologe der Chordatiere ähnliche Motivstrukturen aufweisen, zeigt das Fliegen-Ortholog eine abweichende Musterpräferenz. Diese Erkenntnisse verdeutlichen die evolutionären Verschiebungen in den Bindungsvorlieben von CTCF in pan-chordaten Linien. Zusammenfassend bietet diese Forschung wertvolle Einblicke in die evolutionäre Bewahrung und funktionelle Divergenz von CTCF-vermittelten Chromatin-Kontakten bei Bilaterien. Sie betont die Bedeutung artspezifischer Faktoren und koevolutionärer Dynamiken bei der Gestaltung der Chromatinorganisation und Genregulation. Weitere Untersuchungen an verschiedenen Arten sind entscheidend, um die Entstehung und Bewahrung der CTCF-vermittelten Chromatinarchitektur im Verlauf der Evolution genau zu verstehen. / The three-dimensional organization of animal genomes, known as topologically associating domains (TADs), is crucial for controlling gene activity. TADs are regions with increased genetic interactions, separated by zones with fewer contacts. In vertebrates, the formation of TADs involves a dynamic process called loop extrusion, where cohesin and CTCFs bind to the chromatin. This process creates chromatin loops, with cohesin complexes pausing when they encounter CTCF molecules in a specific orientation. However, although CTCF is highly conserved among bilaterian species, its vital role in organizing genomes spatially has not been observed in invertebrates like flies. This study investigates the chromatin structure in Ciona robusta, a chordate species situated evolutionarily between well-studied organisms like mice and fruit flies. A unique approach was developed to explore the evolution of CTCF as a mediator of three-dimensional chromatin organization. By swapping CTCF orthologs from representative species across the bilaterian group, the research examined their impact on viability, traits, gene expression, genome architecture, and binding patterns across the genome. The findings indicate that Ciona robusta, a non-vertebrate chordate, lacks typical TAD structures, even in the presence of CTCF. However, although the Ciona ortholog cannot create TADs in mouse embryonic stem cells, it can act as a transcription factor, restoring the expression of specific genes and viability in cases of complete CTCF loss. This suggests that CTCF serves a conserved role as a transcription regulator, beyond its recognized role as a structural component in some species. Furthermore, when the mouse ortholog of CTCF was introduced into the fruit fly genome, it failed to induce the formation of chromatin loops, suggesting that the vertebrate version of CTCF alone is insufficient for effective loop extrusion. Additionally, the study revealed subtle differences in CTCF's binding motif preferences between species. While chordate orthologs shared similar motif structures, the fly ortholog had a distinct pattern. These findings underscore the evolutionary changes in CTCF binding preferences among chordate lineages. In summary, this research offers valuable insights into the evolutionary preservation and functional differences in CTCF-mediated chromatin interactions in bilaterian species. It highlights the significance of species-specific factors and co-evolutionary dynamics in shaping chromatin organization and gene regulation.
12

Specialised transcription factories

Xu, Meng January 2008 (has links)
The intimate relationship between the higher-order chromatin organisation and the regulation of gene expression is increasingly attracting attention in the scientific community. Thanks to high-resolution microscopy, genome-wide molecular biology tools (3C, ChIP-on-chip), and bioinformatics, detailed structures of chromatin loops, territories, and nuclear domains are gradually emerging. However, to fully reveal a comprehensive map of nuclear organisation, some fundamental questions remain to be answered in order to fit all the pieces of the jigsaw together. The underlying mechanisms, precisely organising the interaction of the different parts of chromatin need to be understood. Previous work in our lab hypothesised and verified the “transcription factory” model for the organisation of mammalian genomes. It is widely assumed that active polymerases track along their templates as they make RNA. However, after allowing engaged polymerases to extend their transcripts in tagged precursors (e.g., Br-U or Br-UTP), and immunolabelling the now-tagged nascent RNA, active transcription units are found to be clustered in nuclei, in small and numerous sites we call “transcription factories”. Previous work suggested the transcription machinery acts both as an enzyme as well as a molecular tie that maintains chromatin loops, and the different classes of polymerases are concentrated in their own dedicated factories. This thesis aims to further characterise transcription factories. Different genes are transcribed by different classes of RNA polymerase (i.e., I, II, or III), and the resulting transcripts are processed differently (e.g., some are capped, others spliced). Do factories specialise in transcribing particular subsets of genes? This thesis developed a method using replicating minichromosomes as probes to examine whether transcription occurs in factories, and whether factories specialise in transcribing particular sets of genes. Plasmids encoding the SV40 origin of replication are transfected into COS-7 cells, where they are assembled into minichromosomes. Using RNA fluorescence in situ hybridisation (FISH), sites where minichromosomes are transcribed are visualised as discrete foci, which specialise in transcribing different groups of genes. Polymerases I, II, and III units have their own dedicated factories, and different polymerase II promoters and the presence of an intron determine the nuclear location of transcription. Using chromosome conformation capture (3C), minichromosomes with similar promoters are found in close proximity. They are also found close to similar endogenous promoters and so are likely to share factories with them. In the second part of this thesis, I used RNA FISH to confirm results obtained by tiling microarrays. Addition of tumour necrosis factor alpha (TNF alpha) to human umbilical vein endothelial cells induces an inflammatory response and the transcription of a selected sub-set of genes. My collaborators used tiling arrays to demonstrate a wave of transcription that swept along selected long genes on stimulation. RNA FISH confirmed these results, and that long introns are co-transcriptionally spliced. Results are consistent with one polymerase being engaged on an allele at any time, and with a major checkpoint that regulates polymerase escape from the first few thousand nucleotides into the long gene.
13

The subnuclear localisation of Notch responsive genes

Jones, Matthew Leslie January 2018 (has links)
Title: The subnuclear localisation of Notch responsive genes. Candidate Name: Matthew Jones Notch signalling is a highly conserved cell-cell communication pathway with critical roles in metazoan development and mutations in Notch pathway components are implicated in many types of cancer. Notch is an excellent and well-studied model of biological signalling and gene regulation, with a single intracellular messenger, one receptor and two ligands in Drosophila. However, despite the limited number of chemical players involved, a striking number of different outcomes arise. Molecular studies have shown that Notch activates different targets in different cell types and it is well known that Notch is important for maintaining a stem cell fate in some situations and driving differentiation in others. Thus some of the factors affecting the regulation of Notch target genes are yet to be discovered. Previous studies in various organisms have found that the location of a gene within the nucleus is important for its regulation and genome reorganisation can occur following gene activation or during development. Therefore this project aimed to label individual Notch responsive loci and determine their subnuclear localisation. In order to tag loci of interest a CRISPR/Cas9 genome-editing method was established that enabled the insertion of locus tags at Notch targets, namely the well-characterized Enhancer of split locus and also dpn and Hey, two transcription factors involved in neural cell fate decisions. The ParB/Int system is a recently developed locus tagging system and is not well characterised in Drosophila. It has a number of advantages over the traditional LacO/LacI-GFP locus tagging system as it does not rely on binding site repeats for signal amplification and can label two loci simultaneously in different colours. This thesis characterised the ParB/Int system in the Drosophila salivary gland and larval L3 neuroblast. Using 3D image segmentation hundreds of nuclei were reconstructed and a volume based normalisation method was applied to determine the subnuclear localisation of several Notch targets with and without genetic manipulations of the Notch pathway.

Page generated in 0.0809 seconds