Spelling suggestions: "subject:"genome selection"" "subject:"fenome selection""
1 |
Application of genomic technologies to the horseCorbin, Laura Jayne January 2013 (has links)
The publication of a draft equine genome sequence and the release by Illumina of a 50,000 marker single-nucleotide polymorphism (SNP) genotyping chip has provided equine researchers with the opportunity to use new approaches to study the relationships between genotype and phenotype. In particular, it is hoped that the use of high-density markers applied to population samples will enable progress to be made with regard to more complex diseases. The first objective of this thesis is to explore the potential for the equine SNP chip to enable such studies to be performed in the horse. The second objective is to investigate the genetic background of osteochondrosis (OC) in the horse. These objectives have been tackled using 348 Thoroughbreds from the US, divided into cases and controls, and a further 836 UK Thoroughbreds, the majority with no phenotype data. All horses had been genotyped with the Illumina Equine SNP50 BeadChip. Linkage disequilibrium (LD) is the non-random association of alleles at neighbouring loci. The reliance of many genomic methodologies on LD between neutral markers and causal variants makes it an important characteristic of genome structure. In this thesis, the genomic data has been used to study the extent of LD in the Thoroughbred and the results considered in terms of genome coverage. Results suggest that the SNP chip offers good coverage of the genome. Published theoretical relationships between LD and historical effective population size (Ne) were exploited to enable accuracy predictions for genome-wide evaluation (GWE) to be made. A subsequent in-depth exploration of this theory cast some doubt on the reliability of this approach in the estimation of Ne, but the general conclusion that the Thoroughbred population has a small Ne which should enable GWE to be carried out efficiently in this population, remains valid. In the course of these studies, possible errors embedded within the current sequence assembly were identified using empirical approaches. Osteochondrosis is a developmental orthopaedic disease which affects the joints of young horses. Osteochondrosis is considered multifactorial in origin with a variety of environmental factors and heredity having been implicated. In this thesis, a genome-wide association study was carried out to identify quantitative trait loci (QTL) associated with OC. A single SNP was found to be significantly associated with OC. The low heritability of OC combined with the apparent lack of major QTL suggests GWE as an alternative approach to tackle this disease. A GWE analysis was carried out on the same dataset but the resulting genomic breeding values had no predictive ability for OC status. This, combined with the small number of significant QTL, indicates a lack of power which could be addressed in the future by increasing sample size. An alternative to genotyping more horses for the 50K SNP chip would be to use a low-density SNP panel and impute remaining genotypes. The final chapter of this thesis examines the feasibility of this approach in the Thoroughbred. Results suggest that genotyping only a subset of samples at high density and the remainder at lower density could be an effective strategy to enable greater progress to be made in the arena of equine genomics. Finally, this thesis provides an outlook on the future for genomics in the horse.
|
2 |
Viability of Alternative Genetic Improvement Strategies Using Whole Genome Selection on Commercial Dairy OperationsGassaway, Levi W.M. 01 June 2009 (has links) (PDF)
The objective of this thesis was to determine the viability of alternative genetic improvement strategies (GIS). Each alternative GIS combined the use of whole genome selection (WGS) with common reproductive methods (non-sexed semen artificial insemination (AI), sexed semen AI, embryo transfer utilizing non-sexed semen AI) that can be found on a commercial dairy operation. The viability of each GIS was determined using a discounted gene flow model, designed with parameters of a typical western dairy operation, to evaluate the following variables: reproductive method, selection intensity, accuracy of prediction and female age-class. Of the GIS investigated, a heifer-based strategy that used embryo transfer with 11% selection intensity and 85% accuracy was viable. This GIS generated 2.7 million dollars in present value of cumulative gross marginal returns. Despite such encouraging results, at the current prices for genotyping, reproductive methods and achievable prediction accuracy levels, all other GIS resulted in negative returns. Whole genome selection could be a powerful genetic improvement tool for the commercial dairy industry if high accuracy genotyping solutions and reproductive methods that allowed for high selection intensity were combined and priced less than $379.07 per individual.
|
3 |
snpReady and BGGE: R packages to prepare datasets and perform genome-enabled predictions / snpReady e BGGE: pacotes do R para preparar dados genômicos e realizar predições genômicasGranato, Italo Stefanine Correia 07 February 2018 (has links)
The use of molecular markers allows an increase in efficiency of the selection as well as better understanding of genetic resources in breeding programs. However, with the increase in the number of markers, it is necessary to process it before it can be ready to use. Also, to explore Genotype x Environment (GE) in the context of genomic prediction some covariance matrices needs to be set up before the prediction step. Thus, aiming to facilitate the introduction of genomic practices in the breeding program pipelines, we developed two R-packages. The former is called snpReady, which is set to prepare data sets to perform genomic studies. This package offers three functions to reach this objective, from organizing and apply the quality control, build the genomic relationship matrix and a summary of a population genetics. Furthermore, we present a new imputation method for missing markers. The latter is the BGGE package that was built to generate kernels for some GE genomic models and perform predictions. It consists of two functions (getK and BGGE). The former is helpful to create kernels for the GE genomic models, and the latter performs genomic predictions with some features for GE kernels that decreases the computational time. The features covered in the two packages presents a fast and straightforward option to help the introduction and usage of genome analysis in the breeding program pipeline. / O uso de marcadores moleculares permite um aumento na eficiência da seleção, bem como uma melhor compreensão dos recursos genéticos em programas de melhoramento. No entanto, com o aumento do número de marcadores, é necessário o processamento deste antes de deixa-lo disponível para uso. Além disso, para explorar a interação genótipo x ambiente (GA) no contexto da predição genômica, algumas matrizes de covariância precisam ser obtidas antes da etapa de predição. Assim, com o objetivo de facilitar a introdução de práticas genômicas nos programa de melhoramento, dois pacotes em R foram desenvolvidos. O primeiro, snpReady, foi criado para preparar conjuntos de dados para realizar estudos genômicos. Este pacote oferece três funções para atingir esse objetivo, organizando e aplicando o controle de qualidade, construindo a matriz de parentesco genômico e com estimativas de parâmetros genéticos populacionais. Além disso, apresentamos um novo método de imputação para marcas perdidas. O segundo pacote é o BGGE, criado para gerar kernels para alguns modelos genômicos de interação GA e realizar predições genômicas. Consiste em duas funções (getK e BGGE). A primeira é utilizada para criar kernels para os modelos GA, e a última realiza predições genômicas, com alguns recursos especifico para os kernels GA que diminuem o tempo computacional. Os recursos abordados nos dois pacotes apresentam uma opção rápida e direta para ajudar a introdução e uso de análises genômicas nas diversas etapas do programa de melhoramento.
|
4 |
Seleção genômica ampla no melhoramento vegetal / Genome wide selection in plant breedingResende Júnior, Márcio Fernando Ribeiro de 16 April 2010 (has links)
Made available in DSpace on 2015-03-26T13:42:16Z (GMT). No. of bitstreams: 1
texto completo.pdf: 750903 bytes, checksum: 9c754e0205ce36c2c3ced3e42d923e0d (MD5)
Previous issue date: 2010-04-16 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The Genome Wide selection was proposed in 2001 to predict the phenotype values based in molecular markers information. In a previus step, the effect of each of each marker in controlling the genetic variance is estimated. This technology has already been used in animals, however, no report of its use was made for plants. This work aimed to study the impact of GWS, first in a simulated dataset, then in two Eucalyptus populations. Besides that, on the simulated data, it was compared the efficiency of using dominant markers versus the use of codominant ones. The simulation generated one population controlled by many genes (polygenic) and one population with olligogenic control. There were different situations of linkage disequilibrium among the marker and the QTL, different number of markers controlling the trait and heritabilities of 20, 30 and 40%. It was evaluated the prediction ability and the accuracy of the GWS. The results of accuracy were high, which turn in to a selection gain of up to 500% in the selection dataset and the use dominant markers at higher densities is more efficient than the use of dominant markers with lower densities. The Euvalyptus populations were genotyped for total height, diameter at breast height (DBH) and Pilodyn. The values of accuracy were 0,67 for height and 0,69 for DBH in the first population and ,53, 0,62, and 0,53 for total height, DBH and Pilodyn respectively. Those result turn in to a selection gain that varied from 430% to 723% with a reduction of 7 years in the breeding cycle. This showed significant results and gave evidences that the use of GWS in plants is possible to improve the way plant breeding is actually performed. / A seleção genômica ampla (GWS) foi idealizada no ano de 2001 como forma de predizer o fenótipo futuro de uma população baseado em informações de marcadores moleculares, cujos efeitos genéticos aditivos, que estes explicam, já foram previamente estimados. Esta tecnologia já é pesquisada e integrada aos programas de melhoramento animal. Embora em plantas nenhum trabalho com dados reais tenha sido descrito, a GWS tem grandes perspectivas de utilização também no melhoramento genético vegetal, o que pode permitir melhores acurácias e seleção precoce. O objetivo deste trabalho foi, em um primeiro momento, fornecer subsídios para melhor entender a seleção genômica ampla e fazer uma comparação de sua utilização com marcadores dominantes e codominantes. Em uma segunda etapa, a aplicação dessa tecnologia foi então proposta em Eucalyptus e seu impacto foi avaliado no melhoramento florestal. Foram simuladas uma característica de controle oligogênico e outra controlada por muitos genes em diferentes situações de desequilíbrio de ligação com os marcadores. Em cada característica, o número de locos que controlava o caracter foi estabelecido entre 100, 200 e 400 e as herdabilidades entre 20%, 30% e 40%. Foi avaliada a correlação dos valores fenotípicos observados com os valores fenotípicos preditos via informação de marcadores e a acuáracia de seleção. A partir das estimativas de acurácia, calculou-se também o ganho de seleção por unidade de tempo comparado com a seleção fenotípica. Os resultados das simulações demonstraram altos valores de acurácias que proporcionaram ganhos de até 500% caso o tempo do ciclo de geração seja reduzido. Observou-se que se o número de marcadores dominantes disponíveis foi superior ao número de marcadores codominantes, essa maior densidade proporciona acurácias maiores. A segunda etapa do trabalho foi realizada em duas populações de Eucalipto utilizando marcadores dominantes DArTs e avaliando as características Altura total, Diâmetro a Altura do Peito (DAP) e penetração do Pilody. As acurácias máximas obtidas foram de 0,67 para Altura e 0,69 para DAP em uma população, e de 0,53, 0,62, e 0,53 para Altura, DAP e Pilodyn, respectivamente, na segunda população. Estes valores proporcionaram ganhos que variaram entre 430% e 723% caso o ciclo de geração seja reduzido em 7 anos, situação possível no melhoramento de Eucalipto. Este trabalho demonstrou resultados animadores e o uso GWS se mostrou factível em plantas nas simulações e no conjunto de dados reais.
|
5 |
snpReady and BGGE: R packages to prepare datasets and perform genome-enabled predictions / snpReady e BGGE: pacotes do R para preparar dados genômicos e realizar predições genômicasItalo Stefanine Correia Granato 07 February 2018 (has links)
The use of molecular markers allows an increase in efficiency of the selection as well as better understanding of genetic resources in breeding programs. However, with the increase in the number of markers, it is necessary to process it before it can be ready to use. Also, to explore Genotype x Environment (GE) in the context of genomic prediction some covariance matrices needs to be set up before the prediction step. Thus, aiming to facilitate the introduction of genomic practices in the breeding program pipelines, we developed two R-packages. The former is called snpReady, which is set to prepare data sets to perform genomic studies. This package offers three functions to reach this objective, from organizing and apply the quality control, build the genomic relationship matrix and a summary of a population genetics. Furthermore, we present a new imputation method for missing markers. The latter is the BGGE package that was built to generate kernels for some GE genomic models and perform predictions. It consists of two functions (getK and BGGE). The former is helpful to create kernels for the GE genomic models, and the latter performs genomic predictions with some features for GE kernels that decreases the computational time. The features covered in the two packages presents a fast and straightforward option to help the introduction and usage of genome analysis in the breeding program pipeline. / O uso de marcadores moleculares permite um aumento na eficiência da seleção, bem como uma melhor compreensão dos recursos genéticos em programas de melhoramento. No entanto, com o aumento do número de marcadores, é necessário o processamento deste antes de deixa-lo disponível para uso. Além disso, para explorar a interação genótipo x ambiente (GA) no contexto da predição genômica, algumas matrizes de covariância precisam ser obtidas antes da etapa de predição. Assim, com o objetivo de facilitar a introdução de práticas genômicas nos programa de melhoramento, dois pacotes em R foram desenvolvidos. O primeiro, snpReady, foi criado para preparar conjuntos de dados para realizar estudos genômicos. Este pacote oferece três funções para atingir esse objetivo, organizando e aplicando o controle de qualidade, construindo a matriz de parentesco genômico e com estimativas de parâmetros genéticos populacionais. Além disso, apresentamos um novo método de imputação para marcas perdidas. O segundo pacote é o BGGE, criado para gerar kernels para alguns modelos genômicos de interação GA e realizar predições genômicas. Consiste em duas funções (getK e BGGE). A primeira é utilizada para criar kernels para os modelos GA, e a última realiza predições genômicas, com alguns recursos especifico para os kernels GA que diminuem o tempo computacional. Os recursos abordados nos dois pacotes apresentam uma opção rápida e direta para ajudar a introdução e uso de análises genômicas nas diversas etapas do programa de melhoramento.
|
6 |
Naturally occurring variation in the promoter of the chromoplast-specific Cyc-B gene in tomato can be used to modulate levels of ß-carotene in ripe tomato fruitOrchard, Caleb January 2014 (has links)
No description available.
|
Page generated in 0.1223 seconds