• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 13
  • 10
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 96
  • 22
  • 21
  • 18
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Evolution of Drug Resistant Mycobacterium Tuberculosis

Ford, Christopher Burton 05 October 2013 (has links)
Mycobacterium tuberculosis (Mtb) poses a global health catastrophe that has been compounded by the emergence of highly drug resistant Mtb strains. We used whole genome sequencing (WGS) to directly compare the accumulation of mutations in Mtb isolated from cynomolgus macaques with active, latent and early reactivation disease. Based on the distribution of single nucleotide polymorphisms (SNPs) observed, we calculated the mutation rates for these disease states. Our data suggest that during latency, Mtb acquires a similar number of chromosomal mutations as would be expected to emerge in a logarithmically growing culture over the same period of time despite reduced bacterial replication during latent infection. The pattern of polymorphisms suggests that the mutational burden in vivo is due to oxidative DNA damage. We next sought to determine why some strains of Mtb are preferentially associated with high-level drug resistance. We demonstrate that Mtb strains from the East Asian lineage acquire drug resistances in vitro more quickly than Mtb strains from the Euro-American lineage. Their higher drug resistance rate in vitro reflects a higher basal mutation. Moreover, the in vitro mutation rate correlates well with the bacterial mutation rate in humans as determined by whole genome sequencing of clinical isolates. Finally, using an agent-based model, we show that the observed differences in mutation rate predict a significantly higher probability of multi-drug resistance in patients infected with East Asian lineage strains of Mtb. Lastly, we sought to determine the mechanisms Mtb uses to proofread nascently polymerized DNA. Through fluctuation analysis of deletion mutants of two potential \(polIII\epsilon\) homologs, we demonstrate that neither is responsible for the maintenance of DNA replication fidelity. To explore the possibility that one of these homologs, Rv3711c, participates in an unknown redundant pathway, we used transposon capture and sequence (TraCS) to identify genes conditionally essential in an Rv3711c deletion mutant. Our analysis suggests that while Rv3711c does not participate in proofreading, it may act in an alternative novel DNA repair pathway. Taken together, our fluctuation analysis and TraCS data suggest that mycobacteria do not use canonical methods of proofreading to maintain genomic fidelity.
52

Adaptation of lactic acid bacteria for growth in beer

2012 August 1900 (has links)
Growth of bacteria in beer leads to turbidity and off-flavors, resulting in a spoiled and unpalatable product and thus economic loss. The most common beer-spoilage organisms (BSOs) are lactic acid bacteria (LAB), with Lactobacillus and Pediococcus species being the most problematic. Because of the harsh environment (low nutrients, antimicrobial compounds ethanol and hops, anaerobic), only select isolates are able to sustain growth in and spoil beer. To begin understanding the phenomenon of LAB adapting to overcome stresses in beer, ethanol tolerance, hop resistance, and nutrient acquisition mechanisms were investigated. First, ethanol tolerance was analyzed in the context of beer-spoilage ability, and it was found that it is intrinsically high in LAB, thus leading to the conclusion that LAB ability to spoil beer is not dependent on ethanol resistance levels. This was then followed by genome sequencing of the BSO Pediococcus claussenii ATCC BAA-344T (Pc344) to elucidate mechanisms being used to resist hops and acquire low abundance or alternative nutrients. Subsequent analysis of Pc344 and Lactobacillus brevis BSO 464 via reverse transcription quantitative PCR demonstrated the variability found among BSOs in the presence of beer-spoilage-related genes and their use during growth in beer. Further analysis of Pc344 was performed via RNA-sequencing to get a global view of gene expression during mid-logarithmic growth in beer. It was found that several alternative nutrients were being used by Pc344 to sustain growth, and that hop resistance was enabled by a variety of mechanisms including oxidative stress response and pH control. Finally, genomic comparison of BSOs determined that conservation is only present for closely related organisms and that no specific genes/proteins are indicative of an isolate’s beer-spoilage potential. It is more likely that horizontal gene transfer plays a major role in LAB adaption for growth in beer, and that plasmids are very important for this evolution, as was demonstrated by plasmid-variants of Pc344. The main conclusions of this thesis are therefore that hop resistance is the main factor determining ability to grow in beer, and that transfer of genetic elements is the driving force behind LAB evolving into BSOs.
53

Evaluation of the Genetic Differences Between Two Subtypes of Campylobacter fetus (Fetus and Venerealis) in Canada

Mukhtar, Lenah 19 August 2013 (has links)
The pathogen Campylobacter fetus (CF) is classified into two subspecies, Campylobacter fetus subspecies fetus (CFF) and Campylobacter fetus subspecies venerealis (CFV). Even though CFF and CFV are genetically closely related, they exhibit differences in their host adaptation; CFF inhabits the gastrointestinal tract of both humans and several animal species, while classical CFV is specific to the bovine genital tract and is of particular concern with respect to international bovine trade regulation. Traditionally, differentiation between the two subspecies has been achieved using a limited number of biochemical tests but more rapid and definitive genetic methods of discrimination are desired. A recent study suggested that the presence of a genomic island only in CFV could discriminate between the two sub- species but this hypothesis could not be confirmed on a collection of isolates originating in Canada. To identify alternative gene targets that would support accurate subspecies discrimination, this study has applied several approaches including suppression subtractive hybridization and whole genome sequencing supplemented with optical mapping. A subtractive hybridization screen, using a well-characterized CFV isolate recovered during routine screening of bulls in an Artificial Insemination center in western Canada and that lacked much of the genomic island and a typical Canadian CFF isolate, yielded 50 clones; characterization of these clones by hybridization screening against selected CF isolates and by nucleotide sequence BLAST analysis identified three potentially CFV-specific clones that contained inserts originating from a second genomic island. Further screening using a larger CF sample set found that only Clone #35 was truly CFV-specific. Optical maps (NcoI digest) of the Canadian CFF and CFV isolates used for the subtractive hybridization showed that certain regions of these genomes were quite distinct from those of two reference strains. Whole genome sequencing of these two isolates identified two target genes (PICFV5_ORF548 and CFF_Feature #3) that appear to be selectively retained in the two subspecies. Screening of a collection of CF isolates by PCRs targeting these three loci (SSH_Clone #35, PICFV5_ORF548 and CFF_Feature #3) supported their use for subspecies discrimination. This work demonstrates the complex genomic diversity associated with these CF subtypes and the challenge posed by their discrimination using limited genetic loci.
54

Resolution and characterization of subgroups of Gardnerella vaginalis and description of the vaginal microbiota of women with preterm premature rupture of membranes

2015 February 1900 (has links)
The vaginal microbial community is critical to a woman’s health and the health of her family. Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a shift of the vaginal microbiota from a Lactobacillus dominated community to a dense biofilm containing a complex mixture of organisms. Although BV is an important risk factor for poor reproductive health outcomes, the etiology of BV is poorly understood. Gardnerella vaginalis is a hallmark species of BV. Phylogenetic analysis of cpn60 universal target sequences from metagenomic studies of the vaginal microbiome and from G. vaginalis isolates resolved four subgroups within the species. This subdivision, supported by whole genome similarity comparisons, demonstrated that these subgroups might represent different species. Among a group of African women, only G. vaginalis subgroup B was significantly more abundant in women with BV relative to women with Nugent scores not consistent with BV. To characterize the subgroups further, several phenotypic and molecular factors of G. vaginalis subgroups were assessed. Proteomic profiles of isolates within each subgroup formed unambiguous clusters. Sialidase gene sequences were detected in all subgroups, however enzymatic activity was detected only in subgroup B. Two isolates of subgroup B isolates (N153 and N101) were incapable of growth in 7% CO2. Given the well-known relationship between an anaerobic microbiota and BV, anaerobic isolates of G. vaginalis are potentially important players in the vaginal microbial community. To determine genome content differences that could account for the phenotypic difference, whole genome sequences of four G. vaginalis subgroup B isolates representing facultative and anaerobic phenotypes were determined. Comparison of genomes led to the identification of genes predicted to encode proteins involved in cell wall biogenesis and protection from oxidative damage that might account for the observed phenotypes. The cpn60 universal target based methodology that improved resolution of the vaginal microbiota including G. vaginalis was applied in a prospective study of the vaginal microbiome of women with preterm premature rupture of membranes (PPROM). The objectives were to characterize the vaginal microbiota of women following PPROM, and to determine if microbiome composition at the time of rupture predicts latency duration and perinatal outcomes. Only 13/70 samples collected from 36 women were dominated by Lactobacillus spp., the expected profile for healthy women, while Megasphaera type 1 and Prevotella spp. were detected in all samples. Microbiome profiles at the time of membrane rupture did not cluster by gestational age at PPROM, or latency duration. Microbial profiles were unstable over the latency period, with dramatic shifts in composition between weekly samples, and an overall decrease in Lactobacillus abundance. Mollicutes were detected by PCR in 81% (29/36) of women, and these women had significantly lower gestational age at delivery and correspondingly lower birth weight infants than Mollicutes negative women. Taken together, the results presented in this thesis demonstrate the value of high resolution profiling of the vaginal microbiome using cpn60 UT sequences. The resolution of subgroups within G. vaginalis has potentially significant implications for women's health diagnostics, requiring a shift away from considering G. vaginalis as a single entity. The PPROM study provides foundational information that may lead to the identification of informative sequence patterns, providing clinicians with better tools for expectant management following PPROM.
55

Genome-based characterization of Neisseria meningitidis with focus on the emergent serogroup Y disease

Törös, Bianca January 2014 (has links)
Neisseria meningitidis, also referred to as meningococcus, is one of the leading causes of epidemic meningitis and septicaemia worldwide. Despite modern treatment, meningococcal disease remains associated with a high mortality (about 10%). Meningococcal disease is mainly restricted to specific hypervirulent lineages and specific capsular groups (serogroups), which have a changing global distribution over time. At the end of the 2000s, the previously unusual serogroup Y emerged, corresponding to half of all of the invasive meningococcal disease (IMD) cases in Sweden by the beginning of the 2010s. The aim of this thesis is to describe the emergence of serogroup Y meningococci genetically in an effort to understand some of the factors involved in the successful spread of this group throughout Sweden. In addition, genetic typing schemes were evaluated for surveillance and outbreak investigation. Our results indicate that the currently recommended typing for surveillance of meningococci could be altered to include the factor H-binding protein (fHbp). A highly variable multilocus variable number tandem repeat analysis (HV-MLVA) was able to confirm connected cases in a suspected small outbreak. In addition, a strain type sharing the same porA, fetA, porB, fHbp, penA and multilocus sequence type was found to be the principal cause of the increase in serogroup Y disease. However, a deeper resolution obtained from the core genomes revealed a subtype of this strain, which was mainly responsible for the increase. Finally, when the Swedish serogroup Y genomes were compared internationally, different strains seemed to dominate in different regions. This indicates that the increase was probably not due to one or more point introductions of a strain previously known internationally but more probably multifactorial.
56

A clinical and ethical evaluation of secondary findings in the era of clinical whole-genome sequencing

Mackley, Michael January 2017 (has links)
With transformative initiatives like the UK's 100,000 Genomes Project underway, vast amounts of data from genome sequencing are being generated. Genomic results are being actively returned to participants, although policies around their management remain inconsistent and a subject of debate. Secondary findings (SF) have been of particular concern - variants associated with health conditions other than the indication for sequencing, which may or may not be medically actionable. I have conducted a mixed methods study to explore the current transitional period and the issue of secondary findings, and inform future management. Following a narrative review of the literature around SF in genome sequencing and a focused systematic review of primary studies on stakeholder views towards the subject (Part I), gaps in the current literature were identified. These were, chiefly: (1) the need for diverse stakeholder views based on experience making actual decisions around SF; and, (2) empirical data - phenotypic, psychological, behavioural - on actual returned SF. Thus, taking advantage of the local programme of translational genome sequencing, I conducted qualitative studies involving genomic healthcare professionals and genome sequencing participants, to explore their views towards genomic medicine and SF (Part II). Following this, I detail a case study illustrating the process and challenges of returning an SF, as well as outline a study designed to collect empirical data on actual returned SF and present preliminary data to this end (Part III). I illustrate that secondary findings will be a part of tomorrow's genomic medicine: cautious optional screening of actionable SF (including treatable conditions and carrier status information) appears favourable. However, if SF are to be a part of the genomic medicine paradigm, several barriers must be considered: insufficient connectivity between specialties, variant interpretation, clinical interpretation and management, and overpromise and expectations (including recontact in light of new information). In order to overcome these challenges, individuals in unselected populations must be prospectively phenotyped to derive more accurate estimates of population-level penetrance and better understand the full phenotypic spectrum, and we must explore the downstream impact of disclosure. As genome sequencing is mainstreamed, clear evidence-based guidelines for SF in genome sequencing will be essential if harms are to be minimised and benefits are to be maximised, both for participants and the healthcare system at large. At this point, albeit cautiously, we must 'learn by doing'.
57

Genetic contributory factors to infertility

Raberi, Araz January 2017 (has links)
Introduction: In recent years, the average age of first reproduction has risen significantly, the mean now standing at around 30 years in many countries. The adverse effects of maternal age on fertility and reproduction have been well documented. However, the influence of paternal age on fertility, reproduction and postnatal health is relatively poorly understood, and 50% of all male infertility cases are classed as idiopathic or unexplained infertility. Methods: The aim of this study was to investigate factors that contribute to male infertility, split into two main parts. The first part focused on analysing data collected from patients who had undergone fertility treatment to assess the influence of different factors on infertility, especially at the genome level. The second part attempted to deal with some of the technical challenges of screening and diagnostic methods to study the genome, with the aim of providing tools that would assist future studies in pinpointing genetic factors responsible for infertility, especially in cases of idiopathic infertility. Results: Based on data from the first part of the study, it was determined that advanced paternal age can affect sperm progressive motility, sperm DNA integrity and the fertilisation rate of in vitro fertilisation (IVF) cycles, as well as the development of embryos. Direct analysis of sperm DNA fragmentation (SDF) and degradation levels revealed an association between elevated SDF and impaired embryo development. Furthermore, a correlation was shown between chromosome aneuploidy and variance in SDF and sperm DNA degradation. Moreover, aneuploidy can influence abnormal sperm morphology and consequently also progressive motility. Also, embryo development rate of IVF cycles on day three, demonstrated a significant decline in cycles where the sperm used for fertilisation had a high aneuploidy rate, which can highlight the reduced developmental capacity of aneuploid embryos. From the lifestyle factors assessed, only alcohol consumption significantly correlated with the sperm DNA damage. Therefore, poor semen quality may highlight damage that has been incurred by the sperm DNA. When the semen quality is suboptimal, the intracytoplasmic sperm injection (ICSI) technique is suggested as a standard strategy to improve the prognosis of ART. However, when the progressive motility is poor, the ICSI approach is not as effective. Based on our findings and in line with other studies, the only sperm parameter that can be affected by paternal age is sperm motility, which could be an indicator of SDF. Therefore, the decline in ICSI fertilisation rate in patients with impaired sperm progressive motility could be due to sperm DNA damage, and even ICSI cannot improve the fertilisation rate considerably. Discussion: The aim of the second part of this project was to establish a robust workflow for whole- genome amplification (WGA) and whole-genome sequencing of single cells to improve the coverage rate and fidelity, with the aim of providing means of detecting any mutation in the genome that might be responsible for reduced embryonic developmental competence. Towards this end, the efficiencies of two different WGA protocols (REPLI-g and TruePrime) were compared. Multiple technical factors required optimisation in order to create a suitable protocol. Our results demonstrated the overall superiority of REPLI-g compared to TruePrime in almost all the assessed parameters. The amplification rate of REPLI-g was much faster than that of TruePrime, and prolonged incubation led to overamplification and an increased duplication rate. However, the TruePrime method has a slower amplification rate and therefore, by increasing the incubation time, it was possible to improve the quality of the data. The modified protocol with reduced volume also had the most promising outcome in terms of the data produced, and could fulfil our expectations by being fast, cost-effective and efficient. Conclusion: In conclusion, the results from the first part of this study confirmed the negative impact of male age on assisted reproductive treatments, which can result in decreased success rates of fertilisation. Other factors such as sperm DNA damage may also contribute to this age effect, suggesting that assessing this parameter prior to fertility treatment, and attempting to mitigate elevated levels of sperm DNA damage, may be of value to older patients. Additionally, overcoming the technical challenges in studying genetic contributory factors in infertility is a promising step toward better understanding of the mutations and variations that are involved in this phenomenon.
58

Individualizing the Informed Consent Process for Whole Genome Sequencing: A Patient Directed Approach

January 2013 (has links)
abstract: ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience. / Dissertation/Thesis / Ph.D. Biology 2013
59

Microbial and Genomic Analysis of Environmental Samples in Search of Pathogenic Salmonella

Skutas, Jorie L 03 November 2017 (has links)
Salmonellosis or “food poisoning” is a foodborne infection brought on by the pathogen Salmonella from the ingestion of the bacterium on contaminated foods such as vegetables. Infection from Salmonella leads to the highest incidence of hospitalizations and deaths each year, compared to any other bacterial foodborne illness. South Florida is the second largest agricultural winter vegetable producer in the United States, and contamination of vegetables is often observed in preharvest practices. A hardy bacterium, Salmonella, has been shown to live up to 6 weeks in soil and water up to 42°C without a host. The Florida Everglades is a tropical wetland that plays a large role in South Florida’s watershed. It can be divided into agricultural, conservation, and urban areas that connect Lake Okeechobee to Florida Bay by canals, swamps, and rivers. Inland canals tightly regulate water levels in South Florida as a means of flood control for residential and agricultural land. With the influences of anthropomorphic run off from agricultural and urban use, we hypothesized that microbial communities would significantly differ between three select sites in western (Collier county) versus three sites in more urban eastern Florida (Broward county): natural standing water, manmade drainage canal in agricultural areas, and manmade drainage canals in urban areas. We also hypothesized that pathogenic like Salmonella would be present in these habitats. Deep sequencing and ecological genetics analyses of the 16s rRNA V4 region yielded a total of 163,320 unique bacterial OTUs from a total of 139 samples collected monthly for one year in 2015 and part of 2016. Salmonella is not considered an abundant taxon within the microbial population. With the knowledge that Salmonella resides within the microbial population isolates were cultured from soil and water samples that were taken monthly from each site using a modified version of the Food and Drug Administration Bacterial Analytical Methods manual (FDA-BAM). The culturing resulted in 234 isolates obtained and 31 different serovars of Salmonella. Culturing showed that Salmonella favored months with high standing water and high-water temperatures that would lead to the ideal environment for survival. The most commonly occurring isolates within the sample set are those associated with agricultural animals. Though Salmonella may be a rare taxon within the microbial population given the correct environmental conditions such as warm temperatures it is possible to observe Salmonella year round within the South Florida environment.
60

Análise multigênica de rotavírus do grupo A em suínos / Multigenic analysis of porcine group A rotavirus

Fernanda Dornelas Florentino Silva 15 March 2016 (has links)
Os rotavírus do grupo A (RVA) são importantes causadores de diarreias virais em crianças e animais jovens de diferentes espécies, com impactos na saúde pública e animal. Visando contribuir para o entendimento e prevenção das rotaviroses assim como suas possíveis relações zoonóticas, caracterizou-se os 11 segmentos de dsRNA de rotavírus codificadores das proteínas estruturais e não estruturais presentes em amostras fecais positivas de suínos coletadas nos anos de 2012-2013, em 2 estados brasileiros. Mediante o emprego de RT-PCR, sequenciamento nucleotídico e análises filogenéticas, todos os segmentos genéticos oriundos de 12 amostras de RVA detectados em suínos foram analisados e comparados com os de outras amostras descritas previamente. As sequências obtidas para os genes codificadores das proteínas NSP2, NSP3 e VP6 contemplaram a open reading frame (ORF) completa do gene, enquanto que a ORF parcial foi determinada para os genes codificadores das proteínas VP1, VP2, VP3, VP4, VP7, NSP1, NSP4, NSP5 e NSP6. Os genotipos de rotavírus suíno provenientes das regiões amostradas concordam com os mais frequentemente descritos nesta espécie animal, apresentando, assim, uma matriz genética suína com a maioria dos segmentos pertencentes à constelação genotípica 1, com exceção dos genes codificadores das proteínas VP6 e NSP1, os quais foram os genotipos I5 e A8, respectivamente. Apesar de predominar o genotipo 1 (Wa-like) nas sequências deste estudo, a análise genômica sugere a existência de uma variação intragenotípica no genoma do rotavírus do grupo A atualmente circulante nas populações suína amostradas dos estados de São Paulo e Mato Grosso. Adicionalmente, buscou-se identificar os aminoácidos relacionados com a adaptação dos rotavírus no hospedeiro e assinaturas genéticas que distinguissem RVA suíno e humano. Para isso, as sequências obtidas neste estudo foram comparadas com outras cepas de RVA detectadas nestas duas espécies e pertencentes ao genotipo 1 (Wa-like) disponíveis no Genbank. Como resultados foram encontrados mais de 75 sítios de mudanças deaminoácidos que diferenciam RVA suíno e humano além de sítios de substituiçãopresentes em algumas proteínas virais que frequentemente covariaram entre elas. Estes resultados proporcionam um maior entendimento da diversidade viral circulante em unidades de produção suína e uma melhor compreensão dos animaiscomo reservatórios genéticos de cepas de rotavírus emergentes em humanos. / Group A rotaviruses (RVA) are leading causes of viral diarrhea in children and in the young of many animals species with impacts on public and animal health. To contribute to the understanding and prevention of rotaviruses as well as its possible zoonotic relationships, it was characterized the 11 segments of dsRNA rotavirus encoding the structural and nonstructural proteins present in positive fecal samples from pigs collected in the years 2012-2013 in 2 Brazilian states. Using RT-PCR, nucleotide sequencing, and phylogenetic analyses, all gene segments from 12 RVA samples detected in pigs were analyzed and compared with the other samples as described previously. The sequences obtained for the NSP2, NSP3, and VP6 coding genes covered the complete open reading frame (ORF), while the partial ORF was determined for the VP1, VP2, VP3, VP4, VP7, NSP1, NSP4, NSP5 and NSP6 coding genes. The genotypes of porcine rotavirus from the sampled regions agree with the most frequently reported in this species, presenting thus a porcine-RVA-like backbone with most segments being designated as constellation genotype 1, with the exception of the VP6 and NSP1 coding genes, which were genotypes I5 and A8, respectively. Although genotype 1 (Wa-like) sequences were predominant in this study, the genomic analysis suggests the existence of a intragenotypic variation in group A rotavirus genome currently circulating in swine populations sampled in the states of São Paulo and Mato Grosso. In addition, we sought to identify the amino acids related to the adaptation of rotavirus in the host and genetic signatures that distinguish RVA pig and human. For this, the sequences obtained in this study were compared with other strains of RVA detected in these two species, belonging to genotype 1 (Wa-like) available in Genbank. The following results were found more than 75 sites of amino acid changes that differentiate RVA pig and human as well as substitution sites present in some viral proteins that often covaried between them. These results provide a greater understanding of the current viral diversity in swine production units and a better understanding of animals as genetic reservoirs emerging rotavirus strains in humans.

Page generated in 0.4819 seconds