Spelling suggestions: "subject:"geocell"" "subject:"neocell""
1 |
Behaviour Of Geocell Reinforced Foundation BedsSaride, Sireesh 10 1900 (has links) (PDF)
No description available.
|
2 |
The strength and stiffness of geocell support packsWesseloo, Johan 11 May 2005 (has links)
In the last couple of decades, geocell reinforced soil systems have been used in challenging new applications. Although the widely different application of cellular confinement systems demand a better understanding of the fundamental behaviour of the functioning of the cellular reinforced soil systems, surprisingly little research on the fundamental behaviour of the structures and the interaction of the components has been done. A research project has been initiated at the University of Pretoria and this thesis constitutes the first step in achieving an understanding in the functioning of geocell reinforced soil systems. This thesis is focused specifically on the geocell support pack I configuration. However, the research output is not limited to this configuration and may find wider application. The support packs were studied at a width to height ratio of 0.5. The fill material used in this study is classified gold tailings from the Witwatersrand Complex and the geocell membranes were manufactured from a thin (nominal thickness of 0.2 mm) High Density Polyethylene (HDPE) sheet. This study provides an understanding of the functioning of the geocell support pack by studying the constitutive behaviour of the fill and membrane material and their interaction, as well as the influence of multiple cells on the composite structures. The behaviour of the classified tailings material is interpreted in terms of Rowe's stress-dilatancy theory and a simple robust constitutive model for the material behaviour is developed. The stress-strain behaviour of the HDPE membranes is strain-rate-dependent and two simple mathematical models for the strain-rate-dependent stress-strain behaviour of the membranes are developed. An analytical calculation procedure for obtaining the stress-strain behaviour of the fill confined with a single geocell is developed with which some of the shortcomings of the previously presented theories are addressed. This procedure uses the models for the fill and membrane behaviour developed as part of this study. The interaction of adjacent cells in a multiple cell geocell structure, influences its behaviour. This thesis shows that, with exception of low axial strain levels, the efficiency of a structure consisting of multiple cells of a certain size is lower than a single cell structure with the same cell size and fill. These results are contrary to previously published opinion. A method for quantifying the efficiency of a multiple cell pack is also developed. / Thesis (PhD (Geotechnical Engineering))--University of Pretoria, 2006. / Civil Engineering / unrestricted
|
3 |
Ground Improvement using 3D-Cellular Confinement Systems : Experimental and Numerical StudiesHegde, Amarnath January 2014 (has links) (PDF)
The various aspects of the 3D cellular confinement systems (geocells) subjected to static loading are comprehensively studied with the help of experimental and numerical studies. The performances of the geocells were separately studied in both sand and clay beds. Laboratory tests were performed on single as well as multiple cells. The behavior of 3D-cells made of different materials such as Novel polymeric alloy, geogrids and bamboo were compared. Moreover, the performances of the geocells were compared with other forms of geosynthetic reinforcements namely, geogrids and the combination of geocells and geogrids. In addition to comprehensive experimental study, 2-dimensional and 3-dimensional numerical modelling efforts are also presented. A Realistic approach of modelling the geocells in 3D framework has been proposed; which considers the actual curvature of the geocell pockets. An Analytical equation has been proposed to estimate the increase in the bearing capacity of the geocell reinforced soft clay beds. Similarly, a set of equations to estimate the stress and strains on the surface of the geocells subjected to compressive loading were also proposed. A case study highlighting the innovative use of the geocell foundation to support the embankment on soft settled red mud has been documented in the thesis. A new and emerging application of geocell to protect underground utilities and the buried pipelines has been proposed. At the end, behavior of the geocell under cyclic loading has also been discussed.
Firstly, laboratory model tests were performed to understand the behavior of the geocells in sand and clay beds. Test results of unreinforced, geogrid reinforced, geocell reinforced, and geocell reinforced with additional planar geogrid at the base of the geocell cases were compared separately for sand and clay beds. Results revealed that the use of geocells increases the ultimate bearing capacity of the sand bed by 2.9 times and clay bed by 3.6 times. Provision of the basal geogrid increases the ultimate load carrying capacity of the sand and clay bed by about 3.6 times and 4.9 times, respectively. Besides increasing the load carrying capacity, provision of the planar geogrid at the base of the cellular mattress arrests the surface heaving and prevents the rotational failure of the footing. Geocells contribute to the load carrying capacity of the foundation bed, even at very low settlements. In addition, the effect of infill materials on the performance of the geocell was also studied. Three different infill materials, namely aggregate, sand and local red soil were used in the study. Results suggest that the performance of the geocell was not heavily influenced by the infill materials. Out of which aggregate found to be slightly better than other two infill materials.
Further, 2-dimensional numerical studies using FLAC2D (Fast Lagrangian Analysis of Continua in 2D) were carried out to validate the experimental findings. The equivalent composite approach was used to model the geocells in 2-dimensional framework. The results obtained from the FLAC2D were in good agreement with the experimental results. However, in the sand bed, FLAC2D overestimated the bearing pressure by 15% to 20% at higher settlements.
In addition, the joint strength and the wall deformation characteristics of the geocells were studied at the single cell level. The study helps to understand the causes for the failure of the single cell in a cellular confinement system. Experimental studies were conducted on single cells with cell pockets filled up with three different infill materials, namely, silty clay, sand and the aggregates. The results of the experimental study revealed that the deformation of the geocell wall decreases with the increase in the friction angle of the infill material. Measured strain values were found to be in the range of 0.64% to 1.34% for different infill materials corresponding to the maximum applied bearing pressure of 290 kPa. Experimental results were also validated using FLAC3D. Findings from the numerical studies were in accordance with the experimental results. A simple analytical model based on the theory of thin cylinders was also proposed to calculate the accumulated strain of the geocell wall. This model operates under a simple elastic solution framework. The proposed model slightly overestimates the strains as compared to experimental and numerical values.
A realistic approach of modelling the geocells in 3-dimensional (3D) framework has been proposed. Numerical simulations have been carried out by forming the actual 3D honeycomb shape of the geocells using the finite difference package FLAC3D. Geocells were modeled using the geogrid structural element available in the FLAC 3D with the inclusion of the interface element. Geocells, foundation soil and the infill soil were modeled with the different material model to match the real case scenario. The Mohr Colombo model was used to simulate the behavior of the sand bed while modified Cam clay was used to simulate the behavior of the clay bed. It was found that the geocells distribute the load in lateral direction to a relatively shallow depth as compared to unreinforced case. More than 50% reduction in the stress in the presence of geocells and more than 70% reduction in the stress in the presence geocells with basal geogrid were observed in sand and clay beds. The numerical model was also validated with the experimental studies and the results were found to be in good agreement with each other. The validated numerical model was used to study the influence of various properties of the geocells on the performance of the reinforced foundation beds. The performance of the foundation bed was directly influenced by the modulus and the height of the geocells. Similarly, the pocket size of the geocell inversely affected the performance of the reinforced beds. The geocell with textured surface yielded better performance than the geocell with smooth surface.
A case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud has been documented. Red mud is a waste product from the Bayer process of Aluminium industry. The reported embankment is located in Lanjigharh (Orissa) in India. The geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and the combination of geocell and geogrid. The solution was established by superimposing the three mechanisms viz. lateral resistance effect, vertical stress dispersion effect and the membrane effect. By knowing the pressure applied on the geocell, tensile strength of the geogrid and the limiting settlement, the increment in the load carrying capacity can be calculated. The analytical model was validated with the experimental results and the results were found to be in good agreement with each other. The results of the experimental and analytical studies revealed that the use of the combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base in Lanjigharh. Over 15,000 mof embankment base was stabilized using geocell foundation. The foundation work was completed within 15 days using locally available labors and the equipment. Construction of the embankment on the geocell foundation has already been completed. The constructed embankment has already sustained two monsoon rains without any cracks and seepage. Like Aluminum tailings (redmud), geocell foundations can also be used in various other mine tailings like zinc, copper etc. Geocell foundation can offer potential solutions to storage problems faced by various mining industries.
The thesis also proposes a potential alternative to the geocells in the form of bamboocells in order to suit the Indian scenario. Indian has the 2nd largest source of bamboo in the world. The areas particularly rich in bamboo are the North Eastern States, the Western Ghats, Chattisgarh and Andaman Nicobar Islands. The tensile strength and surface roughness of the bamboo was found to be 9 times and 3 times higher than geocell materials. In order to use the bamboo effectively, 3D cells (similar to geocells) and 2D grids (similar to geogrids) are formed using bamboo known as bamboocells and bamboogrids respectively. The idea behind forming bamboocells is to extract the additional confining effect on the encapsulated soil by virtue of its 3-dimensional shape. The laboratory investigations were performed on a clay bed reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials. The performance of bamboocells and bamboogrids reinforced clay beds were compared with the clay bed reinforced with geocells and geogrids. The ultimate bearing capacity of the bamboocell and bamboogrid reinforced clay bed was found to be 1.3 times that of reinforced with geocell and geogrid. The settlement of the clay bed was reduced by 97% due to the insertion of the combination of the bamboocell and bamboogrid as compared to the unreinforced clay bed. The bamboo was treated chemically to increase the durability. The performance of the bamboo was reduced by 15-20% after the chemical treatment; still the performance was better than its geosynthetic counterparts. Analytical studies revealed that the 3% of the ultimate tensile strength of the bamboogrid was mobilized while resisting the footing load.
The study also explored the new and innovative applications of the geocells to protect underground utilities and buried pipelines. The laboratory model tests and the numerical studies were performed on small diameter PVC pipes, buried in geocell reinforced sand beds. In addition to geocells, the efficacy of only geogrid and geocell with additional basal geogrid cases were also studied. A PVC (Poly Vinyl Chloride) pipe with external diameter 75 mm and thickness 1.4 mm was used in the experiments. The vehicle tire contact pressure was simulated by applying the pressure on the top of the bed with the help of a steel plate. Results suggest that the use of geocells with additional basal geogrid considerably reduces the deformation of the pipe as compared to other types of reinforcements. Further, the depth of placement of pipe was also varied between 1B to 2B (B is the width of loading plate) below the plate in the presence of geocell with additional basal geogrid. More than 50% reduction in the pressure and more than 40% reduction in the strain values were observed in the presence of reinforcements at different depths as compared to the unreinforced beds. Further, experimental results were validated with 3-dimensional numerical studies using 3D
FLAC. Good agreement in the measured pipe stain values were observed between the experimental and numerical studies. In addition, the results of the 1-g model tests were scaled up to the prototype case of the shallow buried pipeline below the pavement using the appropriate scaling laws.
The efficacy of the geocells was also studied under the action of cyclic loading. The laboratory cyclic plate load tests were performed in soft clay bed by considering the three different cases, namely, unreinforced, geocell reinforced and geocell with additional basal geogrid reinforced. The coefficient of elastic uniform compression (Cu) was evaluated from the cyclic plate load tests for the different cases. The Cu value was found to increase in the presence of geocell reinforcement. The maximum increase in the Cu value was obtained for the case of the clay bed reinforced with the combination of geocell and the geogrid. The results of the laboratory model tests were extrapolated to prototype foundation supporting the low frequency reciprocating machine. The results revealed that, in the presence of the combination of geocell and the geogrid the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92%.
|
4 |
Response of Geosynthetic Reinforced Granular Bases Under Repeated LoadingSuku, Lekshmi January 2016 (has links) (PDF)
Key factors that influence the design of paved and unpaved roads are the strength and stiffness of the pavement layers. Among other factors, the strength of pavements depends on the thickness and quality of the aggregates used in the pavement base layer. In India and many other countries, there is a high demand for good quality aggregates and the availability of aggregate resources is limited. There is a need for the development of sustainable construction methods which can handle aggregate requirements with least available resources and provide good performance. Hence it is imperative to strive for alternatives to achieve improved quality of pavements using supplementary potential materials and methods. The strength of pavement increases with increase in the thickness of the base which has a direct implication on construction cost whereas decreasing the thickness of the base makes it weak which results in low load bearing capacity especially for unpaved roads. The use of different types of geosynthetics like geocell and geogrid are a potential and reliable solution for the lack of availability of aggregates and studies are conducted in this direction. To better understand the performance of any geosynthetically reinforced base layers, it is essential to characterize the pavement material by studying the behavior of these materials under static as well as repeated loading. For unpaved roads, the base layer, made of granular aggregates plays a crucial role in the reduction of permanent deformation of the pavements. The resilient modulus (Mr) of these materials is a key parameter for predicting the structural response of pavements and for characterizing materials in pavement design and evaluation.
Usually, during the design of flexible pavements, pavement materials are treated as homogeneous and isotropic. The use of rollers in the field during pavement construction leads to a higher compaction of material in the vertical direction which introduces stress-induced anisotropy in the base material. The effect of stress-induced anisotropy on the properties of the granular material is studied and discussed in the first part of the research by conducting repeated load triaxial tests. Isotropic consolidated and anisotropically consolidated samples were prepared to investigate the behavior of base materials under stress induced anisotropic conditions. An additional axial load was applied on the isotropically consolidated sample to create anisotropically consolidated sample. The axial loading was provided such that the stress ratio (σ1/σ3), during anisotropic consolidation was kept constant for all the tests at different confining pressures. The effect of repeated loading on the permanent deformation and the resilient modulus for both isotropically and anisotropically consolidated samples, at different confining pressure and loading conditions, are discussed. The behavior of both anisotropically and isotropically consolidated samples has been explained using the record of the excess pore pressures generated during the experiments. The experimental studies show that the permanent strains measured in the vertical direction of the anisotropically consolidated samples are less compared to the results obtained for isotropically consolidated samples. The resilient moduli of the anisotropically consolidated samples were also observed to be higher than that of the isotropically consolidated sample. The study conducted on the pore pressure of both the samples explains better performance of the anisotropically consolidated samples. The studies showed that the isotropically consolidated samples showed higher pore pressures compared to the anisotropically consolidated specimens.
Another factor which influences the resilient modulus of the pavement materials is the geosynthetic reinforcement. Geocell and geogrid reinforced triaxial samples were prepared to study the effect of reinforcement in the resilient modulus of the base materials. From the literature, it can be seen that most of the research in the triaxial testing equipment were carried out in the non-destructive range of confining pressure and deviatoric stress. Several studies have been conducted by the researchers to visualize the pavement response in the elastic range. However, the studies in the plastic creep range and incremental collapse range were highly limited. In the current study, testing is carried out on the triaxial samples for two different stress ranges. In the first sections, loading was applied in the elastic and elastic shakedown range as per AASTHO T-307. For various loading sequences, a comparative analysis has been done for the resilient modulus of the geogrid and geocell. In the next section, the loading was applied on the sample in the plastic shakedown range and incremental collapse range. The results of the permanent strains and resilient modulus of the sections are compared with the corresponding results of the unreinforced section. In the plastic shakedown and incremental collapse range also the permanent strains of reinforced samples were less than those observed in the unreinforced section.
The performance of geosynthetically reinforced pavement layers can be better understood by studying the samples prepared under realistic field conditions. In the case of triaxial experiments the sample size is very less compared to the field conditions and the effect of other pavement layers on the performance of the base layers cannot be studied on triaxial samples. Samples were prepared in the laboratory by modeling the pavement sections in a cuboidal tank, in which different pavement layers are laid one over the other, and a static loading or repeated loading is applied to overcome the bottleneck of small sample size in the triaxial setup. The experiments were conducted on the unreinforced section; geocell reinforced section and geogrid reinforced section placed above strong and weak subgrade. The results of the study are examined regarding the resilient deformation, permanent deformation, pressure distribution and strain measurements for different thicknesses of base layers under repeated loading. The initial parts of the study present the results of experiments and analysis of the results to understand the behavior of geocell reinforced granular base during repeated loading.
In this study, an attempt is made to understand the various factors which influence the behavior of geocell reinforced granular base under repeated loading by conducting plate load tests. The loads applied on the pavements are much higher than the standard axle loading used for the design of pavements. High pressure was applied on all the test sections to simulate these higher loading conditions in the field. The optimum width and height of the geocell to be provided, to get maximum reduction in permanent deformation is studied in detail. The effect of resilient deformation of reinforced and unreinforced base layers is quantified by calculating the resilient modulus of these layers. The studies showed that the geocell reinforcement was effective in reducing the permanent and resilient deformations of base layer when compared to the unreinforced samples. The resilient modulus calculated was higher for the reinforced sample with half of the thickness of the unreinforced sample. The effect of reinforcement in the stress distribution within the base layer is also studied by measuring the pressures at different depths of the base layer. The results showed that the pressure getting transferred to the subgrade level was much lower in the case of geocell reinforced base layer. The ultimate aim of any pavement design method is to reduce the distress in the subgrade level and thus leading to increased life of pavements. Pressures at the subgrade level for reinforced and unreinforced sections are studied in detail, the main parameter under study being the stress distribution angle, to investigate the distress in the subgrade level. It was observed that the geocell reinforced sample showed higher stress distribution angle when compared to its unreinforced counterpart. Another important factor that has to be studied is the strains at the subgrade level since it is the governing factor of causing rutting in the pavements. From the experiments conducted in the study, it was shown that the reinforcement is very effective in reducing the strains at the top of subgrades. The implications of the current study are brought out in terms of improved pavement performance as the carbon emission reductions. It is important to analyze the performance of reinforced section under realistic field conditions. To do that experiment were conducted on reinforced and unreinforced base layers placed on top of weak subgrade material. The study showed that the reinforcements are effective in reducing the deformations under weak subgrade conditions also but not as effective as it was under strong subgrade case. The experimental results were then validated with the two-dimensional mechanistic-empirical model for geocell reinforced unpaved roads for predicting the performance of pavements under a significant number of cycles. The modified permanent deformation model which incorporates the triaxial test results and strains measured directly from the base sections were used to model and validate.
Plate load experiments were also conducted on base layers reinforced with geogrid to understand the behavior of these reinforced samples under repeated loading. Several factors like the width of the geogrid to be provided and the depth of placing the geogrid in the base layer were studied in detail to achieve maximum reduction in deformations. Permanent and resilient deformation studies were carried out for both reinforced and unreinforced sections of varying thicknesses, and a comparison was made to understand the effect of reinforcement. The geogrid reinforcement could effectively reduce the permanent and resilient deformations when compared to the unreinforced sections. A study was also carried out on the resilient modulus, which explained the better performance of the geogrid reinforced samples by showing higher resilient modulus for reinforced samples than the unreinforced specimens. The performance of the geogrid reinforced base layers was further verified by studying the pressure distribution at the subgrade level and by calculating the stress distribution angle corresponding to the reinforced and unreinforced samples. The strains at the subgrade level were also studied and compared with the unreinforced sample which showed a better performance of geogrid reinforced samples. The results from the strain gauges fixed in the geogrid were further used to model and validate the permanent deformation model. Experiments were conducted on geogrid-reinforced base layer placed above weak subgrade conditions. The results showed that the reinforcement was effective in reducing the deformations under weak subgrade conditions also. Apart from conducting the laboratory studies, experimental results were numerically modeled to accurately back-calculate the resilient moduli of the layers used in the study. 3D numerical modeling of the unreinforced and honeycomb shaped geocell reinforced layers were carried out using finite element package of ANSYS. The subgrade layer, geocell material, and infill material were modeled with different material models to match the real case scenario. The modeling was done for
both static and repeated load conditions. The material properties were changed in a systematic fashion until the vertical deformations of the loading plate matched with the corresponding values measured during the experiment. The experimental study indicates that the geocell reinforcement distributes the load in the lateral direction to a relatively shallow depth when compared to the unreinforced section. Numerical modeling further strengthened the results of the experimental studies since the modeling results were in sync with the experimental data.
|
5 |
Use of geosynthetics on subgrade and on low and variable fill foundationEirini Christoforidou (11819009) 19 December 2021 (has links)
<p>There are significant
problems during construction to establish an adequate foundation for fills
and/or subgrade for pavements when the natural ground has low-bearing soils.
Geosynthetics such as geogrids, geotextiles and/or geocells could provide an
alternative, less costly in time and money, to establish an adequate foundation
for the fill and/or subgrade. There is extensive evidence in the literature and
on DOTs practices about the suitability of using geotextiles in pavements as
separators. Previous studies have also shown that the use of geogrids in
flexible pavements as a reinforcing mechanism could decrease the thickness of
the base layer and/or increase the life of the pavement. In this study,
analyses of selected pavement designs using Pavement ME, while considering
geogrid-enhanced base or subgrade resilient modulus values, showed that
geogrid-reinforcement, when placed at the interface between subgrade and base,
did not produce significant benefits, as only a modest increase in pavement
life was predicted. In addition, parametric finite element analyses were
carried out to investigate the potential benefits of placing a geogrid at the
base of a fill over a localized weak foundation zone. The analyses showed that
the use of geogrids is beneficial only when: (a) the stiffness of the weak
foundation soil is about an order of magnitude smaller than the rest of the
foundation soil; and (b) the horizontal extent of the weak foundation soil is
at least 30% of the base of the embankment foundation. The largest decrease in
differential settlements at the surface of the fill, resulting from
geogrid-reinforcement, was less than 20% and, therefore, it is unlikely that
the sole use of geogrids would be sufficient to mitigate differential
settlements. Based on previous studies, a geocell mattress, which is a
three-dimensional geosynthetic filled with different types of materials, could
act as a stiff platform at the base of an embankment and bridge over weak zones
in the foundation. However, given the limited experience on the use of
geocells, further research is required to demonstrate that geocells can be
effectively used instead of other reinforcement methods.</p>
|
6 |
Etude du comportement dynamique d'un massif en sol renforcé par géotextile alvéolaire M3S® / Study of the dynamic behaviour of a soil mass reinforced with M3S® cellular geotextileSoude, Maxime Charles 11 October 2011 (has links)
Depuis 2007, la société Sol-Solution avec le partenariat du laboratoire LaMI de l’Université Blaise Pascal de Clermont-Ferrand a entrepris des recherches pour étudier le comportement mécanique d’un ouvrage en sol renforcé par une structure alvéolaire M3S® et soumis à une sollicitation dynamique. Dans le cadre de ce travail de recherche, les sollicitations de type choc ont plus particulièrement été étudiées. Ce mémoire est structuré en 3 parties : la première partie rappelle les caractéristiques principales du comportement mécanique ainsi que les principes généraux de conception d’un ouvrage en sol renforcé par géotextiles M3S®. Une étude bibliographique s’intéresse ensuite à la caractérisation des 3 sollicitations dynamiques retenues (séisme, explosion, choc) et aux méthodes existantes permettant leur prise en compte dans la conception d’ouvrage ; la seconde partie présente l’approche numérique préliminaire qui a conduit au développement de deux modèles numériques d’impacts sur des structures en sol renforcé par géocellulaires. Les résultats ont permis d’identifier les paramètres mécaniques les plus influents des différents matériaux constitutifs ; la dernière partie s’appuie sur les résultats précédents ainsi que sur les lois de similitudes pour concevoir une expérimentation d’un impact sur deux massifs alvéolaires à échelle géométrique 1/10e. L’influence sur la réponse de deux types de renforcement au comportement mécanique différent a été étudiée. Les résultats expérimentaux ont ensuite permis un développement des deux modèles numériques préliminaires. Enfin, les perspectives d’utilisation de cet outil numérique ainsi que les applications industrielles sont présentées. / Since 2007, Sol Solution company with the help of the Clermont-Ferrand Blaise Pascal University’s LaMI laboratory, performed a study on the mechanical behaviour under dynamic load of a structure reinforced by the M3S (c) geocell system. In the context of that PhD, impact solicitations have been studied. This memory is divided in three parts : First part focuses on the main mechanical behaviour characteristics and general rules of reinforced soil with M3S(c) geocells design. Then, the bibliographical approach focuses on the 3 dynamic loads chosen (seism, blast, impact) and on the way they are taking in account on work design ; Second part shows the preliminary numerical approach which lead to the development of two numerical impact model on soil reinforced geocell structure. Results allows us to identify the most influent mechanical parameters of the different materials ; Last part groups numerical and similitude laws that allow to design a 1/10th low-scale impact experiment on two structures. Two different reinforcement were tested, plastic and paper. Experimental results allowed to improve two preliminary numerical models. Finally, discussion about that numerical tool and engineering applications are performed.
|
Page generated in 0.1719 seconds