• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • Tagged with
  • 72
  • 72
  • 24
  • 19
  • 18
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Alkaline and peraluminous intrusives in the Clarno Formation around Mitchell, Oregon : ramifications on magma genesis and subduction tectonics

Appel, Michael 15 June 2001 (has links)
The Clarno Formation is a series of volcanic, volcaniclastic, and related intrusive rocks located in central Oregon. It is the westernmost extent of a broader Eocene magmatic belt that covers much the western United States. The magmatic belt stretches eastward from Oregon to western South Dakota, and from the Canadian Yukon to northern Nevada. While once attributed to subduction of the Farallon Plate under North America, more recent work suggests that a more complex tectonic regime involving extension was in place during the early Cenozoic. In the vicinity of Mitchell, Oregon, the Clarno Formation is well represented along with Mesozoic metamorphic and sedimentary units, and younger Tertiary volcanic and volcaniclastic units. In this area, Clarno volcanic activity occurred from ~52-42 Ma, producing mostly andesites and related volcaniclastic rocks. The Mitchell area is also underlain by related intrusive bodies ranging from basalt to rhyolite in composition. The Clarno was most active at ~49 Ma, and is dominantly calcalkaline. In addition, there are several coeval alkaline and peraluminous intrusives also scattered throughout the Clamo Formation. While these suites are less voluminous than the calc-alkaline magmatism, they offer insight into the tectonic and magmatic processes at work in this area during the Eocene. Whereas silicic intrusions are common in the Clarno, the high-silica rhyolite dike on the south face of Scott Butte is unusual due to its large garnet phenocrysts. The existence of primary garnet in rhyolitic magmas precludes middle to upper crustal genesis, a common source for silicic magmas. ⁴⁰Ar/³⁹Ar age determinations of the biotite indicate an age of ~51 Ma. This is after andesitic volcanism had commenced, but prior to the most active period of extrusion. The presence of the almandine garnet indicates that the dike represents partial melting of lower crustal (18-25 km) material. The presence of a high field strength element (HFSE) depletion commonly associated with subduction are magmatism indicates that either the source material had previously been metasomatised, or that some subduction melts/fluids (heat source) mixed with the crustal melt. Two alkaline suites, a high-K calc-alkaline basanite (Marshall and Corporate Buttes) and alkaline minette/kersantite lamprophyres (near Black Butte and Mud Creek), were emplaced ~49 Ma, during the height of calc-alkaline activity. The basanite lacks the HFSE depletion common in the other Clarno rocks. Instead it has a HIMU-type (eg. St Helena) ocean island basalt affinity, resulting from partial melting of enriched asthenospheric mantle. In contrast, the lamprophyres represent hydrous partial melts of metasomatized litho spheric mantle veins and bodies. Alkaline magmatism was not limited to the most active periods of calc-alkaline activity. The emplacement of an alkali basalt (Hudspeth Mill intrusion) at ~45 Ma occurred four million years after the largest pulse of volcanism, but still during calcalkaline activity. This alkali basalt represents partial melting of metasomatized lithospheric mantle. The occurrence of these alkaline suites coeval with the calc-alkaline activity is significant in that it disputes prior subduction theories for the broader Eocene magmatism that are based on spatial and temporal variations from calc-alkaline to alkaline magmatism. These suites also give further insight into the complex tectonic regime that existed in Oregon during the Eocene. The occurrence of asthenospheric melts not caused by fluid fluxing, along with lower lithospheric alkaline melts, are normally associated with extension. Extension provides these magmas with both the mechanism for melting, and the ability to reach shallow crust with little or no contamination. Extension is in agreement with both White and Robinson's (1992) interpretation that most Clarno Formation deposition occurred in extensional basins, and with other provinces in the broader Eocene magmatic belt. / Graduation date: 2002
62

Geochemistry of the Boring Lava along the West Side of the Tualatin Mountains and of Sediments from Drill Holes in the Portland and Tualatin Basins, Portland, Oregon

Barnes, Michelle Lynn 06 October 1995 (has links)
Instrumental Neutron Activation Analysis (INAA) was used to identify geochemical groups in Boring Lava along the west side of the Tualatin Mountains, and in sediments of the Portland and Tualatin basins. Samples of Boring Lava were obtained from TriMet drill core collected during planning of the tunnel alignment for the Westside Light Rail line. Additional samples of Boring Lava were collected from outcrops along the west side of the Tualatin Mountains. Samples of sediment from the Tualatin and Portland basins were obtained from drill core collected during an Oregon Department of Geology and Mineral Industries (DOGAMI) Earthquake Hazards Mapping project. INAA of Boring Lava samples resulted in the identification of three geochemical groups. Additional data sets, including x-ray fluorescence geochemistry, magnetic polarity, and age dates, allowed for the distinction of three Boring Lava units. The Boring Lava of Barnes Road is a young, normal unit, the Boring Lava of Sylvan Hill is an older normal unit, and the Boring Lava of Cornell Mountain is the oldest, reversed unit. The surf ace distribution, identified using topography and outcrop geochemistry, is consistent with the subsurface distribution, identified using boring logs and core geochemistry. Volcanic vent locations are proposed at topographic highs within the identified surface distribution of the Boring Lava of Barnes Road. INAA of sediment samples resulted in the identification of seven groups: (1) Columbia River source sediments, (2) lower Troutdale Formation, (3) Reed Island ashes, (4) young Columbia River sediments, (5) highalumina basalt sediments, (6) episodic Cascadian volcanic sediments, and (7) Columbia River Basalt Group (CRBG) sediments. Only the CRBG sediments group was identified in the Tualatin basin, while all seven groups were identified in the Portland basin. This appears to demonstrate that the sediment packages in the two basins are different. Finally, each sediment group can be placed into one of three broad geochemical categories: Columbia River source sediments and lower Troutdale Formation represent a Columbia River or continental source; Reed Island ashes, young Columbia River sediments, high-alumina basalt sediments, and episodic Cascadian volcanic sediments represent a Cascadian or local source; and CRBG sediments represent residual soils or sediments overlying Columbia River basalt flows.
63

The Mist gas field, N.W. Oregon : source rock characterization and stable isotope (C,H,N) geochemistry

Stormberg, Gregory J. 28 June 1991 (has links)
Graduation date: 1992
64

Geology of the McDermitt mine area, Humboldt County, Nevada

Speer, Wade Edward, 1947-, Speer, Wade Edward, 1947- January 1977 (has links)
No description available.
65

Biostratigraphy of the Cowlitz Formation in the upper Nehalem River Basin, northwest Oregon

Shaw, Neil B. 01 January 1986 (has links)
Examination of stream and roadcut exposures of the Cowlitz Formation allows the selection of measured representative sections, and collection of fossils, from an area roughly defined by the intersection of the boundaries of Clatsop, Columbia, Tillamook and Washington counties in Oregon. The study defines the features of the local environment of deposition, correlates sections to derive a composite columnar section, and develops a checklist of species for both microfossils and megafossils of the Cowlitz Formation.
66

Stratigraphic and geochemical evolution of the Glass Buttes complex, Oregon

Roche, Richard Louis 01 January 1987 (has links)
Glass Buttes complex lies at the northern margin of the Basin and Range province in central Oregon and is cut by the northwest-trending Brothers fault zone. An older acrystalline volcanic sequence of high-silica rhyolites (>75% SiO2) forms a broad platform composed of domes and flows with minor pyroclastic deposits. The high-silica rhyolite sequence is divided on the basis of texture into 1) zoned flows and domes, 2) obsidian flows, 3) felsite flows, and 4) biotite-phyric flows and domes.
67

Analysis of a Gravity Traverse South of Portland, Oregon

Jones, Terry Dean 07 June 1977 (has links)
The state gravity maps of Oregon and Washington show a gravity high centered south of Portland, Oregon and a gravity low in the Tualatin Valley to the west disrupting the regional gravity gradient which is controlled by crustal thickening. Detailed gravity surveys done in the Portland area are consistent with the state gravity maps but show considerably more detail. Quantitative interpretation of this data has provided new information on the subsurface structure in this area; recent work has yielded corroborative evidence for a fault zone bounding the east side of the Portland Hills, and has indicated the presence of faults under the Portland Basin to the east which were previously unknown.
68

The geology and hydrothermal alteration of the Bear Creek Butte area, Crook County, central Oregon

Wilkening, Richard Matthew 01 January 1986 (has links)
The Eocene Clarno Formation, the Oligocene John Day Formation and basalts of the High Lava Plains are exposed in the Bear Creek Butte area in Central Oregon. In this area the Clarno Formation can be divided into a lower sequence composed of intermediate lava flows with intercalated mudflows and volcaniclastic sediments and an upper sequence of rhyolite and basalt flows and felsic ruffs. Separating the two units is a well developed saprolite. The change from intermediate to rhyolite-basalt volcanism reflects a change in the tectonic environment of the Cascade volcanic arc from compression to relaxation as subduction of the Farallon plate by the North American plate slowed, allowing extension of the continental plate margin to occur.
69

Geology and geochemistry of hydrothermal alteration, eastern portion of the North Santiam mining area

Pollock, J. Michael 01 January 1985 (has links)
The Ruth Mine is a base-metal vein deposit near the eastern margin of a reported porphyry copper deposit in the Western Cascade Range in Oregon. Uplift of the Western Cascade Range has resulted in a deeply dissected terrain in which more than a kilometer of the stratigraphy overlying the porphyry-style mineralization is preserved and exposed. The stratigraphic units, which are middle Tertiary in age, have been given arbitrary letter designations beginning with the lowest unit (Unit A) through the uppermost unit (Unit D).
70

Development and application of some quantitative stratigraphic techniques to the Coos Bay coalfield, a Tertiary fluvio-deltaic complex in southwestern Oregon

Titus, Willard Sidney, III 01 January 1987 (has links)
A computer technique for interpreting geophysical logs of drill-holes in quantitative lithologic terms has been developed and tested on the deposits of the late Eocene Coaledo Formation, a well-studied fluvio-deltaic complex in southwestern Oregon. The technique involves the use of induced and natural gamma logs for separation of coal and claystone from coarse-grained detrital rocks and the use of the ratio of resistivity and natural gamma responses (defined here as the "grain size index") to divide the coarse elastic rocks into a series of textural classes corresponding to the Wentworth-Odden particle size scale.

Page generated in 0.042 seconds