• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autoduality of the Hitchin system and the geometric Langlands programme

Groechenig, Michael January 2013 (has links)
This thesis is concerned with the study of the geometry and derived categories associated to the moduli problems of local systems and Higgs bundles in positive characteristic. As a cornerstone of our investigation, we establish a local system analogue of the BNR correspondence for Higgs bundles. This result (Proposition 4.3.1) relates flat connections to certain modules of an Azumaya algebra on the family of spectral curves. We prove properness over the semistable locus of the Hitchin map for local systems introduced by Laszlo–Pauly (Theorem 4.4.1). Moreover, we show that with respect to this Hitchin map, the moduli stack of local systems is étale locally equivalent to the moduli stack of Higgs bundles (Theorem 4.6.3) (with or without stability conditions). Subsequently, we study two-dimensional examples of moduli spaces of parabolic Higgs bundles and local systems (Theorem 5.2.1), given by equivariant Hilbert schemes of cotangent bundles of elliptic curves. Furthermore, the Hilbert schemes of points of these surfaces are equivalent to moduli spaces of parabolic Higgs bundles, respectively local systems (Theorem 5.3.1). The proof for local systems in positive characteristic relies on the properness results for the Hitchin fibration established earlier. The Autoduality Conjecture of Donagi–Pantev follows from Bridgeland–King–Reid’s McKay equivalence in these examples. The last chapter of this thesis is concerned with the con- struction of derived equivalences, resembling a Geometric Langlands Correspondence in positive characteristic, generalizing work of Bezrukavnikov–Braverman. Away from finitely many primes, we show that over the locus of integral spectral curves, the derived category of coherent sheaves on the stack of local systems is equivalent to a derived category of coherent D-modules on the stack of vector bundles. We conclude by establishing the Hecke eigenproperty of Arinkin’s autoduality and thereby of the Geometric Langlands equivalence in positive characteristic.
2

D-Modules on Spaces of Rational Maps and on Other Generic Data

Barlev, Jonathan 13 December 2012 (has links)
Fix an algebraic curve X. We study the problem of parametrizing geometric data over X, which is only generically defined. E.g., parametrizing generically defined maps from X to a fixed target scheme Y. There are three methods for constructing functors of points for such moduli problems (all originally due to Drinfeld), and we show that the resulting functors are equivalent in the fppf Grothendieck topology. As an application, we obtain three presentations for the category of D-modules “on” \(B(K)\backslash G (\mathbb{A}) /G (\mathbb{O})\) and combine results about this category coming from the different presentations. / Mathematics
3

Chiral Principal Series Categories

Raskin, Samuel David 06 June 2014 (has links)
This thesis begins a study of principal series categories in geometric representation theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker objects in the unramified principal series category. This provides an alternative approach to the Arkhipov-Bezrukavnikov theory of Iwahori-Whittaker sheaves that exploits the geometry of the Feigin-Frenkel semi-infinite flag manifold. / Mathematics
4

Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman / Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification

Ye, Lizao 27 September 2019 (has links)
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjecturale du faisceau automorphe dont le paramètre d’Arthur est unipotent et sous-régulier. En utilisant nos deux résultats ci-dessus, nous déterminons les rangs génériques de toutes les composantes isotypiques d’un faisceau S₃-équivariant qui apparaît dans notre conjecture, ce S₃ étant le centralisateur du SL2 sous-régulier dans le groupe dual de Langlands de G. / In this thesis, on the one hand, we generalise to the equivariant case a result of J. Denef and F. Loeser about trigonometric sums on tori ; on the other hand, we study the Thom-Boardman stratification associated to the multiplication of global sections of line bundles on a curve. We prove a subtle inequaliity about the dimensions of these strata. Our motivation comes from the geometric Langlands program. Based on works of W. T. Gan, N. Gurevich, D. Jiang and S. Lysenko, we propose, for the reductive group G of type G2, a conjectural construction of the automorphic sheaf whose Arthur parameter is unipotent and sub-regular. Using our two results above, we determine the generic ranks of all isotypic components of an S3-equivaraint sheaf which appears in our conjecture, this S3 being the centraliser of the sub-regular SL2 inside the Langlands dual group of G.

Page generated in 0.0539 seconds