• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometric modeling with primitives

Angles, Baptiste 29 April 2019 (has links)
Both man-made or natural objects contain repeated geometric elements that can be interpreted as primitive shapes. Plants, trees, living organisms or even crystals, showcase primitives that repeat themselves. Primitives are also commonly found in man-made environments because architects tend to reuse the same patterns over a building and typically employ simple shapes, such as rectangular windows and doors. During my PhD I studied geometric primitives from three points of view: their composition, simulation and autonomous discovery. In the first part I present a method to reverse-engineer the function by which some primitives are combined. Our system is based on a composition function template that is represented by a parametric surface. The parametric surface is deformed via a non-rigid alignment of a surface that, once converged, represents the desired operator. This enables the interactive modeling of operators via a simple sketch, solving a major usability gap of composition modeling. In the second part I introduce the use of a novel primitive for real-time physics simulations. This primitive is suitable to efficiently model volume-preserving deformations of rods but also of more complex structures such as muscles. One of the core advantages of our approach is that our primitive can serve as a unified representation to do collision detection, simulation, and surface skinning. In the third part I present an unsupervised deep learning framework to learn and detect primitives. In a signal containing a repetition of elements, the method is able to automatically identify the structure of these elements (i.e. primitives) with minimal supervision. In order to train the network that contains a non-differentiable operation, a novel multi-step training process is presented. / Graduate
2

Modélisation géométrique à différent niveau de détails d'objets fabriqués par l'homme / Geometric modeling of man-made objects at different level of details

Fang, Hao 16 January 2019 (has links)
La modélisation géométrique d'objets fabriqués par l'homme à partir de données 3D est l'un des plus grands défis de la vision par ordinateur et de l'infographie. L'objectif à long terme est de générer des modèles de type CAO de la manière la plus automatique possible. Pour atteindre cet objectif, des problèmes difficiles doivent être résolus, notamment (i) le passage à l'échelle du processus de modélisation sur des données d'entrée massives, (ii) la robustesse de la méthodologie contre des mesures d'entrées erronés, et (iii) la qualité géométrique des modèles de sortie. Les méthodes existantes fonctionnent efficacement pour reconstruire la surface des objets de forme libre. Cependant, dans le cas d'objets fabriqués par l'homme, il est difficile d'obtenir des résultats dont la qualité approche celle des représentations hautement structurées, comme les modèles CAO. Dans cette thèse, nous présentons une série de contributions dans ce domaine. Tout d'abord, nous proposons une méthode de classification basée sur l'apprentissage en profondeur pour distinguer des objets dans des environnements complexes à partir de nuages de points 3D. Deuxièmement, nous proposons un algorithme pour détecter des primitives planaires dans des données 3D à différents niveaux d'abstraction. Enfin, nous proposons un mécanisme pour assembler des primitives planaires en maillages polygonaux compacts. Ces contributions sont complémentaires et peuvent être utilisées de manière séquentielle pour reconstruire des modèles de ville à différents niveaux de détail à partir de données 3D aéroportées. Nous illustrons la robustesse, le passage à l'échelle et l'efficacité de nos méthodes sur des données laser et multi-vues stéréo sur des scènes composées d'objets fabriqués par l'homme. / Geometric modeling of man-made objects from 3D data is one of the biggest challenges in Computer Vision and Computer Graphics. The long term goal is to generate a CAD-style model in an as-automatic-as-possible way. To achieve this goal, difficult issues have to be addressed including (i) the scalability of the modeling process with respect to massive input data, (ii) the robustness of the methodology to various defect-laden input measurements, and (iii) the geometric quality of output models. Existing methods work well to recover the surface of free-form objects. However, in case of manmade objects, it is difficult to produce results that approach the quality of high-structured representations as CAD models.In this thesis, we present a series of contributions to the field. First, we propose a classification method based on deep learning to distinguish objects from raw 3D point cloud. Second, we propose an algorithm to detect planar primitives in 3D data at different level of abstraction. Finally, we propose a mechanism to assemble planar primitives into compact polygonal meshes. These contributions are complementary and can be used sequentially to reconstruct city models at various level-of-details from airborne 3D data. We illustrate the robustness, scalability and efficiency of our methods on both laser and multi-view stereo data composed of man-made objects.
3

Dohledávání objektů v obraze / Image object detection

Pluskal, Richard January 2008 (has links)
The thesis deals with design of a program for entering various types of geometric objects in an image for the purpose of their further processing. The program should also contain algorithms to ease object entering (e.g. refining manually entered object position). In the first part there is a brief description of the computer vision and its basic methods used in the work as well as introduction of the OpenCV image processing library. The following part describes three types of geometric primitives that are implemented for now. Because the output of the program is in universal XML format, there is short chapter about the XML. After that, there are summarized some methods for searching of parametric description of geometric primitives in an image. The final chapter describes the proposed system and evaluates possibility and suitability of its usage for various types of images.

Page generated in 0.0907 seconds