• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 40
  • 31
  • 19
  • 18
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Tutte polynomial in knot theory

Petersen, David Alan 01 January 2007 (has links)
This thesis reviews the history of knot theory with an emphasis on the diagrammatic approach to studying knots. Also covered are the basic concepts and notions of graph theory and how these two fields are related with an example of a knot diagram and how to associate it to a graph.
52

Experimental and observational geometry

Field, Albert D. 01 January 1928 (has links)
Geometry has the distinction of being one of the oldest subjects given in the high-school. Its subject-matter was formulated and organized by the Greeks into a fine system of thought before the time of Christ. Since leaving the hands of the Greeks, geometry has received only a few minor changes, and these largely in recent years. Heretofore, the study of geometry has been made almost entirely dependent upon memory and reasoning. Geometricians have been slow in adopting the laboratory and observational methods. This thesis has been written to encourage the student in his work of observing geometrical forms, and in the construction of good designs and geometrical figures, and to obtain a better practical understanding of the figures and principles of geometry through the laboratory and observational work.
53

A Variety of Proofs of the Steiner-Lehmus Theorem

Gardner, Sherri R 01 May 2013 (has links) (PDF)
The Steiner-Lehmus Theorem has garnered much attention since its conception in the 1840s. A variety of proofs resulting from the posing of the theorem are still appearing today, well over 100 years later. There are some amazing similarities among these proofs, as different as they seem to be. These characteristics allow for some interesting groupings and observations.
54

A Study of Topological Invariants in the Braid Group B2

Sweeney, Andrew 01 May 2018 (has links) (PDF)
The Jones polynomial is a special topological invariant in the field of Knot Theory. Created by Vaughn Jones, in the year 1984, it is used to study when links in space are topologically different and when they are topologically equivalent. This thesis discusses the Jones polynomial in depth as well as determines a general form for the closure of any braid in the braid group B2 where the closure is a knot. This derivation is facilitated by the help of the Temperley-Lieb algebra as well as with tools from the field of Abstract Algebra. In general, the Artin braid group Bn is the set of braids on n strands along with the binary operation of concatenation. This thesis also shows results of the relationship between the closure of a product of braids in B2 and the connected sum of the closure of braids in B2. Results on the topological invariant of tricolorability of closed braids in B2 and (2,n) torus links along with their obverses are presented as well.
55

Groups of Non Positive Curvature and The Word Problem

Nepsa, Zoe 01 June 2023 (has links) (PDF)
Given a group $\Gamma$ with presentation $\relgroup{\scr{\scr{A}}}{\scr{R}}$, a natural question, known as the word problem, is how does one decide whether or not two words in the free group, $F(\scr{\scr{A}})$, represent the same element in $\Gamma$. In this thesis, we study certain aspects of geometric group theory, especially ideas published by Gromov in the late 1980's. We show there exists a quasi-isometry between the group equipped with the word metric, and the space it acts on. Then, we develop the notion of a CAT(0) space and study groups which act properly and cocompactly by isometries on these spaces, such groups are known as CAT(0) groups. Furthermore, we show CAT(0) groups have a solvable word problem.
56

Mathematical Knowledge for Teaching and Visualizing Differential Geometry

Pinsky, Nathan 01 May 2013 (has links)
In recent decades, education researchers have recognized the need for teachers to have a nuanced content knowledge in addition to pedagogical knowledge, but very little research was conducted into what this knowledge would entail. Beginning in 2008, math education researchers began to develop a theoretical framework for the mathematical knowledge needed for teaching, but their work focused primarily on elementary schools. I will present an analysis of the mathematical knowledge needed for teaching about the regular curves and surfaces, two important concepts in differential geometry which generalize to the advanced notion of a manifold, both in a college classroom and in an on-line format. I will also comment on the philosophical and political questions that arise in this analysis.
57

A Discrete Approach to the Poincare-Miranda Theorem

Ahlbach, Connor Thomas 12 May 2013 (has links)
The Poincare-Miranda Theorem is a topological result about the existence of a zero of a function under particular boundary conditions. In this thesis, we explore proofs of the Poincare-Miranda Theorem that are discrete in nature - that is, they prove a continuous result using an intermediate lemma about discrete objects. We explain a proof by Tkacz and Turzanski that proves the Poincare-Miranda theorem via the Steinhaus Chessboard Theorem, involving colorings of partitions of n-dimensional cubes. Then, we develop a new proof of the Poincare-Miranda Theorem that relies on a polytopal generalization of Sperner's Lemma of Deloera - Peterson - Su. Finally, we extend these discrete ideas to attempt to prove the existence of a zero with the boundary condition of Morales.
58

On Independence, Matching, and Homomorphism Complexes

Hough, Wesley K. 01 January 2017 (has links)
First introduced by Forman in 1998, discrete Morse theory has become a standard tool in topological combinatorics. The main idea of discrete Morse theory is to pair cells in a cellular complex in a manner that permits cancellation via elementary collapses, reducing the complex under consideration to a homotopy equivalent complex with fewer cells. In chapter 1, we introduce the relevant background for discrete Morse theory. In chapter 2, we define a discrete Morse matching for a family of independence complexes that generalize the matching complexes of suitable "small" grid graphs. Using this matching, we determine the dimensions of the chain spaces for the resulting Morse complexes and derive bounds on the location of non-trivial homology groups. Furthermore, we determine the Euler characteristic for these complexes and prove that several of their homology groups are non-zero. In chapter 3, we introduce the notion of a homomorphism complex for partially ordered sets, placing particular emphasis on maps between chain posets and the Boolean algebras. We extend the notion of folding from general graph homomorphism complexes to the poset case, and we define an iterative discrete Morse matching for these Boolean complexes. We provide formulas for enumerating the number of critical cells arising from this matching as well as for the Euler characteristic. We end with a conjecture on the optimality of our matching derived from connections to 3-equal manifolds
59

Pattern Recognition in Stock Data

Dover, Kathryn 01 January 2017 (has links)
Finding patterns in high dimensional data can be difficult because it cannot be easily visualized. There are many different machine learning methods to fit data in order to predict and classify future data but there is typically a large expense on having the machine learn the fit for a certain part of a dataset. We propose a geometric way of defining different patterns in data that is invariant under size and rotation. Using a Gaussian Process, we find that pattern within stock datasets and make predictions from it.
60

Sudoku Variants on the Torus

Wyld, Kira A 01 January 2017 (has links)
This paper examines the mathematical properties of Sudoku puzzles defined on a Torus. We seek to answer the questions for these variants that have been explored for the traditional Sudoku. We do this process with two such embeddings. The end result of this paper is a deeper mathematical understanding of logic puzzles of this type, as well as a fun new puzzle which could be played.

Page generated in 0.066 seconds