• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2130
  • 1151
  • 314
  • 222
  • 190
  • 131
  • 98
  • 52
  • 50
  • 50
  • 49
  • 47
  • 41
  • 38
  • 36
  • Tagged with
  • 5249
  • 1150
  • 990
  • 604
  • 508
  • 476
  • 430
  • 417
  • 399
  • 378
  • 337
  • 316
  • 313
  • 306
  • 296
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
721

The membrane analysis of pseudo-general thin shells with respect of cyclidal surfaces

Dixon, Roger January 1999 (has links)
No description available.
722

On the Frechet means in simplex shape spaces

Kume, Alfred January 2001 (has links)
No description available.
723

The Toda equations and congruence in flag manifolds

Sijbrandij, Klass Rienk January 2000 (has links)
This thesis is concerned with the 2-dimensional Toda equations and their geometric interpretation in form of r-adapted maps into flag manifolds, r-adapted maps are not only of interest due to their relation with the Toda equations, but also for their adaption to the m-synametric space structure of flag manifolds. This thesis studies the congruence question for r-adapted maps in flag manifolds. The main theorem of this thesis is a congruence theorem for г-holomorphic maps Ψ : S(^2) → G/T of constant curvature, where G can be any compact simple Lie group. It is supplemented by a congruence theorem for general r-holomorphic maps Ψ : S(^2) → G/T if G has rank 2, and a number of congruence theorems for isometric r-primitive Ψ : S(^2) → G/T of constant Kahler angle. The second group of congruence theorems is proved for the rank 2 case, as well as a selection of Lie groups with higher rank: SU(4),SU(5),F(_4),E(_6),E(_6),E(_8),Sp(n).
724

Chip Firing Games and Riemann-Roch Properties for Directed Graphs

Gaslowitz, Joshua Z 01 May 2013 (has links)
The following presents a brief introduction to tropical geometry, especially tropical curves, and explains a connection to graph theory. We also give a brief summary of the Riemann-Roch property for graphs, established by Baker and Norine (2007), as well as the tools used in their proof. Various generalizations are described, including a more thorough description of the extension to strongly connected directed graphs by Asadi and Backman (2011). Building from their constructions, an algorithm to determine if a directed graph has Row Riemann-Roch Property is given and thoroughly explained.
725

Pre-quantization of the Moduli Space of Flat G-bundles

Krepski, Derek 18 February 2010 (has links)
This thesis studies the pre-quantization of quasi-Hamiltonian group actions from a cohomological viewpoint. The compatibility of pre-quantization with symplectic reduction and the fusion product are established, and are used to understand the necessary and sufficient conditions for the pre-quantization of M(G,S), the moduli space of at flat G-bundles over a closed surface S. For a simply connected, compact, simple Lie group G, M(G,S) is known to be pre-quantizable at integer levels. For non-simply connected G, however, integrality of the level is not sufficient for pre-quantization, and this thesis determines the obstruction, namely a certain 3-dimensional cohomology class, that places further restrictions on the underlying level. The levels that admit a pre-quantization of the moduli space are determined explicitly for all non-simply connected, compact, simple Lie groups G. Partial results are obtained for the case of a surface S with marked points. Also, it is shown that via the bijective correspondence between quasi-Hamiltonian group actions and Hamiltonian loop group actions, the corresponding notions of prequantization coincide.
726

Built form and aeolian sand deposits in the Algerian Sahara

Sherzad, Mohammed Ihsan January 1996 (has links)
No description available.
727

Scale-based surface understanding using diffusion smoothing

Cai, Li-Dong January 1991 (has links)
The research discussed in this thesis is concerned with surface understanding from the viewpoint of recognition-oriented, scale-related processing based on surface curvatures and diffusion smoothing. Four problems below high level visual processing are investigated: 1) 3-dimensional data smoothing using a diffusion process; 2) Behaviour of shape features across multiple scales, 3) Surface segmentation over multiple scales; and 4) Symbolic description of surface features at multiple scales. In this thesis, the noisy data smoothing problem is treated mathematically as a boundary value problem of the diffusion equation instead of the well-known Gaussian convolution, In such a way, it provides a theoretical basis to uniformly interpret the interrelationships amongst diffusion smoothing, Gaussian smoothing, repeated averaging and spline smoothing. It also leads to solving the problem with a numerical scheme of unconditional stability, which efficiently reduces the computational complexity and preserves the signs of curvatures along the surface boundaries. Surface shapes are classified into eight types using the combinations of the signs of the Gaussian curvature K and mean curvature H, both of which change at different scale levels. Behaviour of surface shape features over multiple scale levels is discussed in terms of the stability of large shape features, the creation, remaining and fading of small shape features, the interaction between large and small features and the structure of behaviour of the nested shape features in the KH sign image. It provides a guidance for tracking the movement of shape features from fine to large scales and for setting up a surface shape description accordingly. A smoothed surface is partitioned into a set of regions based on curvature sign homogeneity. Surface segmentation is posed as a problem of approximating a surface up to the degree of Gaussian and mean curvature signs using the depth data alone How to obtain feasible solutions of this under-determined problem is discussed, which includes the surface curvature sign preservation, the reason that a sculptured surface can be segmented with the KH sign image alone and the selection of basis functions of surface fitting for obtaining the KH sign image or for region growing. A symbolic description of the segmented surface is set up at each scale level. It is composed of a dual graph and a geometrical property list for the segmented surface. The graph describes the adjacency and connectivity among different patches as the topological-invariant properties that allow some object's flexibility, whilst the geometrical property list is added to the graph as constraints that reduce uncertainty. With this organisation, a tower-like surface representation is obtained by tracking the movement of significant features of the segmented surface through different scale levels, from which a stable description can be extracted for inexact matching during object recognition.
728

Emergent spacetime

Mathaba, Kagiso January 2017 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in ful lment of the requirements for the degree of Master of Science. June 29, 2017. / In this dissertation we explore the connection between entanglement and geometry. Recent work in the AdS/CFT correspondence has uncovered fascinating connections between quantum information and geometry, suggesting that entanglement in the CFT results in the emergence of spacetime in the bulk . We work in the 1/2 BPS sector of the duality between N = 4 super Yang Mills on R x S3 and IIB string theory on AdS5 S5. We aim to test this connection by calculating the Renyi entropies in the presence of 1/2 BPS operators heavy enough to deform the background geometry. This allows us to calculate the entanglement of these operators via the replica trick. The Ryu-Takayanagi formula relates this calculation to a minimal surface in the dual supergravity geometry, thus allowing us to observe how the boundary entanglement affects the bulk spacetime. We build a formula to calculate correlation functions of 1/2 BPS operators on the Riemann sheet that arises from the replica trick. This is a recursive formula based on group theory techniques. We demonstrate how the formula works for light operators and discuss how it can be generalised to include heavy operators by considering symmetric groups of higher order. / LG2018
729

The algebra and geometry of continued fractions with integer quaternion coefficients

Mennen, Carminda Margaretha 06 May 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. 2015. / We consider continued fractions with coe cients that are in K, the quaternions. In particular we consider coe cients in the Hurwitz integers H in K. These continued fractions are expressed as compositions of M¨obius maps in M R4 1 that act, by Poincar´e extension, as isometries on H5. This dissertation explores groups of 2 2 matrices over K and two particular determinant type functions acting on these groups. On the one hand we find M R4 1 , the group of orientation preserving M¨obius transformations acting on R4 1 in terms of a determinant D [19],[38]. On the other hand K may be considered as a Cli ord algebra C3 based on two generators i and j, or more generally i1 and i2, where i j = k or i1i2 = k. It is shown this group of matrices over C4 defined in terms of a pseudo-determinant [1],[37] can also be used to establish M R4 1 . Through this relationship we are able to connect the determinant D to the pseudo-determinant when acting on the matrices that generate M R4 1 . We explore and build on the results of Schmidt [30] on the subdivision of a Farey simplex into 31 Farey simplices. These results are reinterpreted in H5 with boundary K1 using the group of M¨obius transformations on R4 1 [19], [38]. We investigate the unimodular group G = PS DL(2;K) with its generators and derive a fundamental domain for this group in H5. We relate this domain to the 24-cells PU and r that tessellate K. We define the concepts of Farey neighbours, Farey geodesics and Farey simplices in the Farey tessellation of H5. This tessellation of H5 by a Farey pentacross under a discrete subgroup G of M R4 1 is analogous to the Farey tessellation by Farey triangles of H2 under the modular group [31]. The result in Schmidt [30], that for each quaternion there is a chain of Farey simplices that converge to , is reinterpreted as a continued fraction, with entries from H, that converges to . We conclude with a review of Pringsheim’s theorem on convergence of continued fractions in higher dimensions [5].
730

Properties of integer partitions and plane partitions

Blecher, Aubrey 07 August 2013 (has links)
A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (by production of original research) in Mathematics School of Mathematics University of the Witwatersrand Johannesburg December 2012 / Generating functions and asymptotic analysis have been used in four di er- ent situations to establish new results for extremely well studied structures. Later in this thesis a more detailed individual abstract for each of these studies is provided. The four situations are: A. Durfee square areas in integer partitions. B. A study of the relationship between integer compositions and their constituent partitions by specifying the asymptotic expectation of the number of such partitions in arbitrary composition. C. Similar to B above but focusing more on the generating functions rather than on the expectations derived therefrom. D. In the area of plane partitions with additional structure imposed upon them.

Page generated in 0.055 seconds