• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2130
  • 1151
  • 314
  • 222
  • 190
  • 131
  • 98
  • 52
  • 50
  • 50
  • 49
  • 47
  • 41
  • 38
  • 36
  • Tagged with
  • 5249
  • 1150
  • 990
  • 604
  • 508
  • 476
  • 430
  • 417
  • 399
  • 378
  • 337
  • 316
  • 313
  • 306
  • 296
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
691

Teaching geometry in the elementary classroom

Rogers, Virginia Lee Copper 01 January 1995 (has links)
No description available.
692

Torus embedding and its applications

Nguyenhuu, Rick Hung 01 January 1998 (has links)
No description available.
693

Gauss-Bonnet formula

Broersma, Heather Ann 01 January 2006 (has links)
From fundamental forms to curvatures and geodesics, differential geometry has many special theorems and applications worth examining. Among these, the Gauss-Bonnet Theorem is one of the well-known theorems in classical differential geometry. It links geometrical and topological properties of a surface. The thesis introduced some basic concepts in differential geometry, explained them with examples, analyzed the Gauss-Bonnet Theorem and presented the proof of the theorem in greater detail. The thesis also considered applications of the Gauss-Bonnet theorem to some special surfaces.
694

Spectral spread and non-autonomous Hamiltonian diffeomorphisms / spectral spreadと自励的ではないハミルトン微分同相写像について

Sugimoto, Yoshihiro 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21541号 / 理博第4448号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 小野 薫, 教授 向井 茂, 教授 望月 拓郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
695

Discrete Curvature Theories and Applications

Sun, Xiang 25 August 2016 (has links)
Discrete Differential Geometry (DDG) concerns discrete counterparts of notions and methods in differential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy different geometric or physical constraints. We study a combination of geometry and physics – the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences – a particular type of congruences defined by linear interpolation of vertex normals. The main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the practicability and accuracy of their applications in face recognition.
696

Characterizations of Some Combinatorial Geometries

Yoon, Young-jin 08 1900 (has links)
We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.
697

Topological Invariants for Non-Archimedean Bornological Algebras

Mukherjee, Devarshi 24 September 2020 (has links)
No description available.
698

Experimental and observational geometry

Field, Albert D. 01 January 1928 (has links)
Geometry has the distinction of being one of the oldest subjects given in the high-school. Its subject-matter was formulated and organized by the Greeks into a fine system of thought before the time of Christ. Since leaving the hands of the Greeks, geometry has received only a few minor changes, and these largely in recent years. Heretofore, the study of geometry has been made almost entirely dependent upon memory and reasoning. Geometricians have been slow in adopting the laboratory and observational methods. This thesis has been written to encourage the student in his work of observing geometrical forms, and in the construction of good designs and geometrical figures, and to obtain a better practical understanding of the figures and principles of geometry through the laboratory and observational work.
699

ON HODGE CYCLES ON PRODUCTS OF CERTAIN ALGEBRAIC VARIETIES

Maria Berardi (15333814) 20 April 2023 (has links)
<p>This dissertation concerns the construction of some examples of complex algebraic varieties giving insight into certain questions in Hodge theory. </p>
700

Octonion Algebras over Schemes and the Equivalence of Isotopes and Isometric Quadratic Forms

Hildebrandsson, Victor January 2023 (has links)
Octonion algebras are certain algebras with a multiplicative quadratic form. In 2019, Alsaody and Gille showed that, for octonion algebras over unital commutative rings, there is an equivalence between isotopes and isometric quadratic forms. The contravariant equivalence from unital commutative rings to affine schemes, sending a ring to its spectrum, leads us to a question: can the equivalence of isometry and isotopy be generalized to octonion algebras over a (not necessarily affine) scheme? We present the basic definitions and properties of octonion algebras, both over rings and over schemes. Then we show that an isotope of an octonion algebra C over a scheme is isomorphic to a twist by an Aut(C)–torsor. We conclude the thesis by giving an affirmative answer to our question.

Page generated in 0.046 seconds