• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrology and geomorphology of select Great Plains rivers

Costigan, Katie Helen January 1900 (has links)
Doctor of Philosophy / Department of Geography / Melinda Daniels / Great Plains rivers are unique systems that vary from large, continental scale, to small intermittent streams with grain sizes that range from bedrock to cobbles to silt. These rivers have been subject to widespread hydrologic alteration both within the channel and the watershed, which has resulted in an alteration in their hydrologic and geomorphic regimes. Although there is an acknowledgement of this alteration, to date there has not been a synthesis of the hydrology of Great Plains rivers or of their longitudinal morphologies. Chapters in this dissertation provide, to my knowledge, the first comprehensive analyses of the hydrology and morphology of Great Plains rivers over a range of spatial and temporal scales. In the first study, I found that there was no uniform pattern of hydrologic alteration throughout the Great Plains, which is likely attributable to variable system-specific reservoir management objectives, land use changes, and climatic regimes over the large area the Great Plains encompass. Results of this study are the first to quantify the widespread hydrologic alteration of Great Plains rivers following impoundment. In the second study, I found an apparent decoupling between local moisture conditions and streamflow in intermittent prairie streams. Results of this study used statistical models to identify relationships between flow intermittence, mean annual flow, and flood flow characteristics with moisture to characterize flow in an intermittent prairie stream. In the final study, I found that the downstream trends in hydraulic geometry and substrate characteristics of the Ninnescah River were consistent with the expected trends proposed by hydraulic geometry and substrate theories. However, there were points that deviated from the expected trends, most notably where a substantially large tributary enters the Ninnescah River and as the Ninnescah River approaches the Arkansas River, and causal explanations for these deviations were explored. Results of this study are, to my knowledge, the first of its kind to assess the longitudinal hydraulic geometry and substrate characteristics of a large sand-bed river over a large spatial scale. To our knowledge, there have been no comparable studies exist that attempted to describe hydrologic and geomorphic characteristics of prairie streams.
2

Evaluation and development of predictive streambank erosion curves for northeast Kansas using Rosgen's "bancs" methodology

Sass, Christopher K. January 1900 (has links)
Doctor of Philosophy / Environmental Design and Planning Program / Timothy D. Keane / The original purpose of this investigation was to develop streambank erosion prediction curves for Northeast Kansas streams. Rosgen's (2001, 2006) methods were employed and eighteen study banks were measured and monitored over a four-year period, summer 2007 through summer 2010. At each study bank, a toe pin and two to three bank pins were set at a recorded longitudinal profile station of the stream. Vertical and horizontal measures from the toe pin to the bank face were taken each summer, 2007 as the baseline measure and 2008 - 2010 as bank change years. Bank profiles were overlaid to gain insight into bank area lost or gained due to erosional or depositional processes. A Bank Erosion Hazard Index (BEHI) and Near Bank Stress (NBS) combination rating was assessed and calculated for each study bank during the initial survey of 2007. The streambanks experienced varied erosion rates for similar BEHI/NBS combinations producing R2 values from 0.43 as the High/Very High BEHI rating and 0.80 as the Moderate BEHI rating. In addition, Moderate BEHI ratings provided higher erosion rates than the High/Very High BEHI rating and curves intersected at lower NBS ratings, suggesting a discrepancy in the fit of the model used in the Northeast Kansas region and conditions. In this light, modification of the BEHI model was evaluated and variables were assessed in the model for additional influence exerted in the Northeast Kansas region. Vegetation seemed to provide the most influence to bank resistance and was more closely evaluated. Banks with and without woody riparian vegetation were then plotted against BEHI and NBS values, as banks lacking woody vegetation eroded at higher rates. This study's findings can allow us to calibrate the BEHI model according to woody vegetation occurrence levels along streambanks in the Black Vermillion watershed. Modifications regarding vegetation occurrence of the BEHI model was completed and the results of these modifications generated R2 values of 0.78 for High/Very High BEHI and 0.82 for Moderate BEHI ratings. High/Very High ratings provided higher predicted erosion rates than Moderate ratings, while the curve slopes did not intersect at lower NBS ratings.
3

Spatial patterns and impacts of slope failures in five canyons of the Teton Mountains, Grand Teton National Park, Wyoming

Butler, William David January 1900 (has links)
Master of Arts / Department of Geography / Richard Marston / Slope failures play a significant role as a mass movement hazard in the deglaciated mountain canyons in Grand Teton National Park. The park’s geologic and glacial histories are unique in comparison to other areas in the Rocky Mountain range. However, few detailed maps and statistical analyses of slope failures as hazards exist for park officials and visitors. The purpose of this study is to produce a comprehensive map of slope failures in five of the most accessible and commonly used canyons of the park: Cascade, Death, Garnet, Granite, and Paintbrush. This project combined fieldwork, LiDAR imagery, and GIS mapping to document five main categories of slope failures—rock slides, rock/debris flows, rock falls, and snow avalanches, as well as complex slope failures involving a combination of these categories. Summary statistics, maps, and histograms of average slope gradient, aspect, and curvature conditions as well as precipitation conditions at the “source” area of slope failures were generated for individual canyons as well as the entire study area. Snow avalanche source areas where debris flows were not readily present occurred most commonly on north and northeast facing slopes, slopes averaging a 40% gradient, and slightly convex slopes. Debris flow source areas occurred most commonly on south and southeast facing slopes, slopes with an average 42% gradient, and on slightly convex slopes. Rock fall source areas were most common on north facing slopes, slopes of an average 55% gradient, and a mostly flat curvature. Rock slide source points were most common on north facing slopes, slopes of an average 54% gradient, and flat to slightly concave slopes. Rock Mass Strength (RMS) values were sampled at a rate of every 0.5 kilometers on the hiking trail of each canyon to provide an introductory insight into rock stability conditions in each canyon. Slope failures not only impact the physical landscape of canyons in Grand Teton National Park but can affect human structures as well. Physical attributes and locations of slope failures were compared to locations of camping zones and hiking trails in the Park to determine areas of common human usage that were most susceptible to past movement events.
4

Petrogenesis and rare earth element economic potential of Pilot Knob, a Pliocene (?) alkaline intrusive complex in the Togwotee Pass region, northwestern Wyoming (U.S.A)

Dodd, Zachary Caleb January 1900 (has links)
Master of Science / Geology / Matthew E. Brueseke / Previous K-Ar dating and petrography (Obradovich, 1978) have identified Pilot Knob as an ~3.4 (±0.06) Ma alkaline intrusive body. Bulk rock geochemistry obtained via XRF from four samples of Pilot Knob verifies the transitionally alkaline composition of the body, and new REE data also show enriched La, Ce, and Nd concentrations, consistent with rare earth element (REE) enrichment. Given the increased demand for REEs over the past ~30 years and China accounting for > 90% of global REE production (Kynicky, et al. 2012), it is important to evaluate new domestic REE sources. This includes those associated with alkaline intrusive complexes, because they are demonstrated to host high REE concentrations (Verplanck and Van Gosen, 2011). Such alkaline igneous occurrences show complex mineralization and consist of many minerals containing substitutional REEs (Mariano and Mariano, 2012). This study evaluates the petrogenesis and mineralogy of Pilot Knob (and a secondary field site, Wildcat Hill) and determines whether the intrusive body is consistent with an economically viable REE deposit. Additionally, given its geographic location and Pliocene faulting and magmatism (e.g., predating the earliest volcanism at Yellowstone), Pilot Knob may represent one of the earliest structural manifestations of the “arrival” of the Yellowstone hotspot at its current location under the North American lithosphere or magmatism associated with lithospheric extension to the south at the Leucite Hills, WY. Inspection of satellite imagery, which has been verified with field data, shows that other intrusive igneous bodies (e.g. - Wildcat Hill) exist, along an apparent normal fault zone along strike with a major extensionally related fault zone documented ~10 km northwest of Pilot Knob. Clinopyroxene geobarometry, coupled with Nd isotope data (εNd[subscript 3.5Ma] = -21.9), indicates that Pilot Knob formed via a multi-stage development history that initiated with melting of ancient lithospheric mantle, where crystallization occurred at a variety of depths. As an alkaline intrusive complex, Pilot Knob has been identified, based on mineral and chemical compositions, as a kersantite, and has been found to contain approximately 600 ppm total light-rare earth element ore lode with ~150 ppm Nd, ~175 ppm La, and ~338 ppm Ce enrichment. Apatite was found to be the primary REE-bearing mineral via petrography and electron microprobe analyses. Based on current technology and processing methods, REE concentrations were not found to be significant enough to denote an economically viable REE ore deposit at Pilot Knob.
5

Assessment of ephemeral gully erosion using topographic and hydrologically based models in Central Kansas

Sekaluvu, Lawrence January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Aleksey Sheshukov / The global requirements for food and agricultural products have increased enormously in recent years mainly due to increase in global population. More land is brought under human development and cultivation including marginal lands that are susceptible to degradation processes of erosion, waterlogging, and depletion of organic matter. The resulting effects include; deprivation of the roles performed by the environment, high costs of water treatment, and sedimentation of water reservoirs. This study aims at assessment of ephemeral gully (EG) erosion using topographic and hydrologically based models in two paired watersheds in Central Kansas. The effects of best management practices (BMPs) implementation on EG formation, and erosion rates within the watershed are discussed. The topographic index (TI) models used include: slope area model (SA), compound topographic index model (CTI), wetness topographic index model (WTI), slope area power (SA2), kinematic wave model (nLS), and modified kinematic wave model (nLSCSS). EGs predicted by each model threshold were compared with observed EGs obtained through digitization and field reconnaissance. The agreement of thresholds obtained from location and length approaches were compared by means of drainage density concept. Statistical analysis was performed by error matrix for EG location analysis, and root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) for EG length analysis. A TIN-based real-time integrated basin simulator (tRIBS) model, a physically-based, distributed hydrological model was coupled with an EG erosion component (Foster and Lane model) to estimate the erosion rates, and effect of installation of BMPs on reduction of EG erosion rates from agricultural fields. The results indicated that TI models could predict EG location with a maximum total accuracy of 70%. The effectiveness of TI models at prediction of EGs is affected by watershed features such as installed structural best management practices, roads, and culverts. The CTI model outperformed all the TI models at prediction of EGs with maximum Kappa and NSE values of 0.32 and 0.55 respectively, and a minimum RMSE value of 0.087 m. Structural BMPs are effective at controlling erosion from croplands, however, the effectiveness of structural BMPs at reduction of sediment loadings from EGs vary depending on surface cover, and BMP geometry.
6

Geomorphic function of large woody debris within a headwater tallgrass prairie stream network

Roberts, Brianna January 1900 (has links)
Master of Arts / Department of Geography / Melinda Daniels / Large woody debris, (LWD), defined as pieces measuring ≥ 1 meter in length and ≥ 10 centimeters in diameter (Swanson and Lienkaemper, 1978; Marston, 1982) is an influential stream component. Once stable LWD obstructs streamflow and regulates key processes, causing increases in storage capacity, scouring, and variations to the bed, the extent contingent upon LWD’s average length of residence time within a system. Several North American studies have acknowledged the effects of interactions between wood, sediment, and flow regimes (Bilby, 1981; Keller, E.A., and Swanson, F.J., 1979; Montgomery et al., 1995; Wohl, E., 2008), linking the triad to geomorphic changes, the redistribution of bed materials, and ecological benefits. A consensual baseline reference for LWD’s function over time does not exist however, partly due to previous research being primarily conducted in the Northeast and Pacific Northwest regions where historic actions of humans, particularly riparian logging and stream clearing, have greatly impacted the condition of the watersheds. Researchers having long-overlooked the Great Plains and other regions not commonly associated with woody vegetation has increased the ambiguity regarding the transferability of LWD findings between regions. By shifting the focus to a non-forested region, the goal of this thesis is to measure the dynamics and influence of a prairie stream’s wood load on sediment storage and bed morphology. The Kings Creek network study area is located on the Konza Prairie Biological Station in northeastern Kansas, and drains one of few remaining unaltered North American watersheds. Results document the ongoing forest expansion into the surrounding pristine grassland, and provide a temporal context of the regions changing climate representative of atypical stream conditions caused by drought. In total, 406 individual pieces of wood were measured. The wood load was lower than most forest streams referenced (13.05 m[superscript]³/100 m), though higher than expected resulting from the absence of streamflow. LWD stored 108 m[superscript]³ of sediment within the channel, and the cumulative volume of LWD-formed pools was 169 m[superscript]³. Additionally, statistical analysis showed longitudinal bed variations to be strongly associated to LWD abundance, further indicating that LWD influences prairie stream processes similarly to those in a forest stream.

Page generated in 0.0575 seconds