• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Petrogenesis and rare earth element economic potential of Pilot Knob, a Pliocene (?) alkaline intrusive complex in the Togwotee Pass region, northwestern Wyoming (U.S.A)

Dodd, Zachary Caleb January 1900 (has links)
Master of Science / Geology / Matthew E. Brueseke / Previous K-Ar dating and petrography (Obradovich, 1978) have identified Pilot Knob as an ~3.4 (±0.06) Ma alkaline intrusive body. Bulk rock geochemistry obtained via XRF from four samples of Pilot Knob verifies the transitionally alkaline composition of the body, and new REE data also show enriched La, Ce, and Nd concentrations, consistent with rare earth element (REE) enrichment. Given the increased demand for REEs over the past ~30 years and China accounting for > 90% of global REE production (Kynicky, et al. 2012), it is important to evaluate new domestic REE sources. This includes those associated with alkaline intrusive complexes, because they are demonstrated to host high REE concentrations (Verplanck and Van Gosen, 2011). Such alkaline igneous occurrences show complex mineralization and consist of many minerals containing substitutional REEs (Mariano and Mariano, 2012). This study evaluates the petrogenesis and mineralogy of Pilot Knob (and a secondary field site, Wildcat Hill) and determines whether the intrusive body is consistent with an economically viable REE deposit. Additionally, given its geographic location and Pliocene faulting and magmatism (e.g., predating the earliest volcanism at Yellowstone), Pilot Knob may represent one of the earliest structural manifestations of the “arrival” of the Yellowstone hotspot at its current location under the North American lithosphere or magmatism associated with lithospheric extension to the south at the Leucite Hills, WY. Inspection of satellite imagery, which has been verified with field data, shows that other intrusive igneous bodies (e.g. - Wildcat Hill) exist, along an apparent normal fault zone along strike with a major extensionally related fault zone documented ~10 km northwest of Pilot Knob. Clinopyroxene geobarometry, coupled with Nd isotope data (εNd[subscript 3.5Ma] = -21.9), indicates that Pilot Knob formed via a multi-stage development history that initiated with melting of ancient lithospheric mantle, where crystallization occurred at a variety of depths. As an alkaline intrusive complex, Pilot Knob has been identified, based on mineral and chemical compositions, as a kersantite, and has been found to contain approximately 600 ppm total light-rare earth element ore lode with ~150 ppm Nd, ~175 ppm La, and ~338 ppm Ce enrichment. Apatite was found to be the primary REE-bearing mineral via petrography and electron microprobe analyses. Based on current technology and processing methods, REE concentrations were not found to be significant enough to denote an economically viable REE ore deposit at Pilot Knob.
2

Petrologie a genetické vztahy alkalických intruzivních hornin roztockého intruzivního komplexu / Petrology and genetic relationships of alkaline intrusive rocks of the Roztoky Intrusive Complex

Mysliveček, Jakub January 2019 (has links)
Roztoky Intrusive Center (33-28 Ma) is connected with tertiary volcanic activity in the territory of the Bohemian Massif (Czech Republic). It is located in the České středohoří volcanic complex on the tectonic line of the Ohře rift. The aim of this work was to petrologically describe local rocks and to verify the possible connection of the Roztoky Intrusive Center (RIC) with carbonatite magmatism, as could be suggested by the presence of alkaline rocks including their exotic types (essexites, monzodiorites, sodalitic syenites,…). It is assumed that there is a hidden carbonatite intrusion under the RIC caldera structure, which may also indicate geophysical manifestations of two hidden gravimetric minimas. In a detailed exploration of a drill core from the R-2 borehole from the 1960s, a petrographic rocks composition of a part of the caldera filling was described, including new find of xenolite of carbonatite in 286,5 m of R-2 borehole. By means of geochemical and micro-probe analyzes the well material including carbonatite was examined in detail. Carbonate mineralization with high REE contents was found in carbonatite, but also in the exocontact of the previously described silicocarbonatite (Rapprich et al. 2017). The discovery of carbonatite xenolite and the presence of minerals with high concentrations of...
3

Petrogenesis and Concentric Zonation of the Belchertown Intrusive Complex, West-Central Massachusetts

Van Wagner, Karen June 11 July 2017 (has links) (PDF)
The Belchertown Intrusive Complex is a ~164 km2 Devonian pluton that intruded Paleozoic metasedimentary and metavolcanic rocks in west-central Massachusetts. Intrusion of the pluton was synchronous with Acadian deformation (Ashwal, 1974). The complex is concentrically zoned, with a core of orthopyroxene-biotite monzodiorite, a middle zone of clinopyroxene-hornblende-biotite granodiorite, and an outermost zone of hornblende-biotite granodiorite. Zoning from a more to less hydrous mineral suite from the outside to the inside of the pluton led Ashwal (1974) to suggest that metamorphic hydration most strongly affected the outermost zones of the complex. Basaltic inclusions occur most commonly near the edges of the pluton. Many of these inclusions preserve textures suggestive of mafic-felsic magma interaction. The abundance of basaltic enclaves on the edges of the complex may suggest a bowl-shaped structure, with lower more mafic-dominated rocks exposed on the edges of the complex. Bulk rock major element analyses of granitoids, basalts and gabbros, and diorites from all zones of the complex show that intermediate samples, regardless of zone, plot on a mixing line between mafic and felsic end members, supporting a model in which mafic and felsic magmas may have mingled and mixed. Trace element analyses of intermediate-composition samples are similar across the entire complex, with enrichment in large ion lithophile elements and a pronounced Nb trough. In contrast, trace element concentrations in both the mafic rocks (basaltic enclaves and gabbroic inclusions), and in the granitoids, show considerable variation. The diversity of composition within both the mafic and felsic end-members suggests that either fractionation or differing degrees of partial melting of source rocks may account for these compositional ranges. Sanukitoids comprise a majority of the inner zone, and point to the mixing of parental melts at depth in a subduction tectonic regime as a likely model of petrogenesis for the complex.

Page generated in 0.0439 seconds