Spelling suggestions: "subject:"geophysical"" "subject:"eophysical""
261 |
Numerical modelling of fluid flow and particle transport in rough rock fracture during shearKoyama, Tomofumi January 2005 (has links)
The effects of different shearing processes and sample sizes on the fluid flow anisotropy and its impact on particle transport process in rough rock fractures are significant factors that need to be considered in the performance and safety assessments of underground nuclear waste repositories. The subjects, however, have not been adequately investigated previously in either laboratory experiments or numerical modeling. This thesis addresses these problems using numerical modeling approaches. The modeling consists of two parts: 1) fluid flow simulations considering more complex but realistic flow boundary conditions during shear processes that cannot be realized readily in laboratory experiments, using digitalized fracture surfaces scanned in the laboratory, so that anisotropic fluid flow induced by shearing with channeling phenomenon can be directly simulated and quantified; 2) particle tracking simulations to demonstrate the impacts of such channeling effects on characteristic properties of particle transport. The numerical method chosen for the simulations is the Finite Element Method (FEM). Scale effects were considered in the simulations by using fracture surface samples of different sizes. The distributions of fracture aperture during shear were obtained by numerically generating relative translational and rotary movements between two digitalized surfaces of a rock fracture replica without considering normal loading. From the evolutions of the aperture distributions during the shearing processes, the evolutions of the transmissivity fields were determined by assuming the validity of the cubic law locally. A geostatistical approach was used to quantify the scale effects of the aperture and transmissivity fields. The fluid flow was simulated using different flow boundary conditions, corresponding to translational and rotary shear processes. Corresponding to translational shear (with a 1 mm shear displacement interval up to a maximum shear displacement of 20 mm), three different flow patterns, i.e., unidirectional (flow parallel with and perpendicular to the shear direction), bi-directional and radial, were taken into account. Corresponding to rotary shear (with a 0.5o shear angle interval up to 90o), only the radial flow pattern was considered. The particle transport was simulated using the Particle Tracking Method, with the particles motion following the fluid velocity fields during shear, as calculated by FEM. For the unidirectional particle transport, the breakthrough curves were analyzed by fitting to an analytical solution of 1-D advection-dispersion equation. The dispersivity, Péclet number and tracer velocity, as well as their evolutions during shear, were determined numerically. The results show that the fracture aperture increases anisotropically during translational shear, with a more pronounced increase in the direction perpendicular to the shear displacement, causing significant fluid flow channelling. A more significant increase of flow rate and decrease in travel time of the particles in the direction perpendicular to the shear direction is predicted. The particle travel time and characteristics are, correspondingly, much different when such effects caused by shear are included. This finding may have an important impact on the interpretation of the results of coupled hydro-mechanical and tracer experiments for measurements of hydraulic properties of rock fractures, because hydraulic properties are usually calculated from flow test results along the shear directions, with the effects of the significant anisotropic flow perpendicular to the shear direction ignored. The results also show that safety assessment of a nuclear repository, without considering the effects of stress/deformation of rocks on fluid flow and transport processes, may have significant risk potential. The results obtained from numerical simulations show that fluid flow through a single rough fracture changes with increasing sample size, indicating that representativehydro-mechanical properties of the fractures in the field can only be accurately determined using samples of representative sizes beyond their stationarity thresholds. / QC 20101207
|
262 |
Advancements in Surface Wave Testing: Numerical, Laboratory, and Field Investigations Regarding the Effects of Input Source and Survey Parameters on Rayleigh and Love wavesMahvelati Shams Abadi, Siavash January 2019 (has links)
The Multichannel Analysis of Surface Waves (MASW) method has been widely used to evaluate the subsurface in engineering applications since late 1990’s. In MASW, surface waves are introduced into the subsurface and recorded by sensors along the ground surface. The characteristics of the propagating surface wave are influenced by the subsurface stratification, the manner in which the surface waves are input into the ground, and the survey parameters to acquire data. Rayleigh waves are typically generated by vertical strikes on a metallic plate which serves as a coupler between the active input source (e.g., a sledgehammer) and the ground surface. It has been suggested that plastic-type base plates can improve the low-frequency energy of Rayleigh waves and therefore, can increase the depth of investigation among other potential improvements. However, very little studies exist in the literature that evaluate the role of base plate material, especially plastic materials. In addition to Rayleigh surface waves, seismic surface waves can also be generated with horizontal impacts (i.e., Love waves) using specialized base plates. In this regard, much less is available in the literature regarding Love waves as sources in MASW testing which means that optimum field survey parameters, the effects of near-field, and the role of seismic source have not been thoroughly investigated yet for Love waves. Given the aforementioned gaps in the literature, two aspects of MASW have been investigated. First, the role of base plate material, specifically plastic-type plates, has been studied. Field data collected from six sites along with the data from laboratory experiments and numerical simulations of hammer-plate impact were studied. The results showed that softer base plates improve the energy transfer by as much 20% and lead to minor improvements, typically one-digit numbers in relative changes, in other signal characteristics such as signal bandwidth and signal-to-noise ratio. These results were corroborated with laboratory testing and numerical models of wave propagation with different base plate materials. The second goal was to improve understanding of Love wave propagation, particularly as related to resolution capabilities from survey parameters. Rayleigh and Love waveforms were collected with multiple active seismic sources at three sites and a systematic comparison was made between the two types of waves. Also, seismic wave propagation was simulated using the research community code SPECFEM2D to further investigate their differences. The results revealed critical new information about the depth of investigation, the effects of bedrock location on near-field effects, and the role of the different survey parameters on Rayleigh and Love wave data. The depth of investigation of Love wave MASW was deeper by about 2-9 m than that of Rayleigh MASW as a result of improved minimum frequency. The minimum source offset to avoid near-field effects was comparable for both Rayleigh and Love waves (0.3-0.4 of maximum wavelength). At closer source offset locations, Rayleigh waves were more affected by near-field effects and showed an additional 10% underestimation of planar phase velocities. Overall, the results from both parts of this study provides new practical insights about some of the unexplored aspects of surface wave testing using MASW. / Civil Engineering
|
263 |
Limitations in Geophysical Processing and Interpretation: Three Canadian Case StudiesLee, Madeline Dana 09 1900 (has links)
With an increasing demand on natural resources, more efficient prospecting techniques need to be developed. One important tool is geophysical methodologies. As technology develops so do these methods and availability of high-resolution information; however if this information is not properly corrected biased results are achieved. This thesis intends to explore common limitations faced by modern geophysical surveys. Processing and interpreting of geophysical data is often accomplished in frequency domain due to speed and efficiency; however this often leads to non-geologically correct results. A spatial domain filter based on potential field signal curvature analysis is a proposed alternative. By isolating specific curvatures, one is isolating specific frequencies, which are generated by sources at particular depths. The method was applied to synthetic and real-world datasets. Following
filtering two analytic routines were applied, which showed that the spatially filtered datasets provided cleaner results. Terrain corrections have always been applied to gravity datasets, but rarely are terrain corrections implemented as a pre-processing step in magnetic
survey interpretation. Therefore, interpretations based on anomalies from non-corrected
magnetic data may be of non-geological features. In a magnetic survey conducted in the mid-eighties, magnetic lows were associated with alteration; however, at that time of initial interpretation no terrain correction was applied. This dataset was revisited and terrain corrected, which showed that the magnetic lows were associated with unaccounted bathymetry. The Bathurst Mining Camp (BMC) is one of Canada's most important base metal mines, but is threatened by a fluctuating mineral resources market. By using high resolution geophysical surveys potential mineral reserves may be located. However, in order to do so a better understanding of geology is necessary, which is often difficult due to limited outcrops. Through the processing and interpretation of recent geophysical datasets, a revised
geological map of a selected portion of the BMC has been developed. / Thesis / Master of Science (MSc)
|
264 |
An integrated geophysical program for sulfide exploration at Ham Nord, Quebec/Jihad, Abakoyas January 1974 (has links)
No description available.
|
265 |
Pattern recognition applied to uranium prospecting.Briggs, Peter Laurence January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Science. / Microfiche copy available in Archives and Science. / Bibliography: leaves 230-233. / Ph.D.
|
266 |
Multiscale Modeling and Simulation of Turbulent Geophysical FlowsSan, Omer 22 June 2012 (has links)
The accurate and efficient numerical simulation of geophysical flows is of great interest in numerical weather prediction and climate modeling as well as in numerous critical areas and industries, such as agriculture, construction, tourism, transportation, weather-related disaster management, and sustainable energy technologies. Oceanic and atmospheric flows display an enormous range of temporal and spatial scales, from seconds to decades and from centimeters to thousands of kilometers, respectively. Scale interactions, both spatial and temporal, are the dominant feature of all aspects of general circulation models in geophysical fluid dynamics. In this thesis, to decrease the cost for these geophysical flow computations, several types of multiscale methods were systematically developed and tested for a variety of physical settings including barotropic and stratified wind-driven large scale ocean circulation models, decaying and forced two-dimensional turbulence simulations, as well as several benchmark incompressible flow problems in two and three dimensions. The new models proposed here are based on two classes of modern multiscale methods: (i) interpolation based approaches in the context of the multigrid/multiresolution methodologies, and (ii) deconvolution based spatial filtering approaches in the context of large eddy simulation techniques. In the first case, we developed a coarse-grid projection method that uses simple interpolation schemes to go between the two components of the problem, in which the solution algorithms have different levels of complexity. In the second case, the use of approximate deconvolution closure modeling strategies was implemented for large eddy simulations of large-scale turbulent geophysical flows. The numerical assessment of these approaches showed that both the coarse-grid projection and approximate deconvolution methods could represent viable tools for computing more realistic turbulent geophysical flows that provide significant increases in accuracy and computational efficiency over conventional methods. / Ph. D.
|
267 |
Investigation of the Relationships Between Geotechnical Sediment Properties and Sediment Dynamics Using Geotechnical and Geophysical Field MeasurementsJaber, Reem Atef 18 July 2022 (has links)
Seabed surface sediments vary with active geomorphodynamics and sediment remobilization processes. Understanding relations between geotechnical sediment properties and sediment mobilization processes can potentially improve predictions of coastal erosion and hazard mitigation. Portable free fall penetrometers have emerged as an economic and useful tool for rapid geotechnical site characterization and uppermost sediment layer investigation. Acoustic methods have been used to assess seabed layering, scour evolution, and seabed morphology. However, there still exist major limitations in using these methods for classification and characterization of seabed sediment surface layers in the context of local sediment dynamics. Therefore, the goal of this research is to advance field data collection methods and field data availability towards advancing the current understanding and prediction of nearshore sediment dynamics.
Geotechnical and geophysical measurements were conducted at different sites: Delaware Bay, Delaware; Pea Island, North Carolina; York River, Virginia; Potomac River, Maryland; Guadalupe River, Brazos River, Colorado River, Texas with different soil types and properties, hydrodynamic conditions, and morphological settings. The data collected was utilized to address the research goals through: (1) combining geotechnical and acoustic measurements to get better insight on sediment dynamics and erodibility, (2) proposing a framework that utilizes PFFP data to classify soil and estimate certain sediment properties (relative density and friction angle for sand and undrained shear strength for clays), relevant for local sediment dynamics, and (3) investigating how relevant geotechnical properties are reflected in acoustic, and specifically chirp sonar measurements.
The findings of this research support the capability of portable free fall penetrometer to estimate sediment properties in topmost layers for different soil types such as friction angles, with an accuracy of ± 1° and undrained shear strength values, with <10% mismatches. Geoacoustic parameters such as acoustic impedance can also be calculated from acoustic measurements and correlated to certain sediment properties such as porosity and bulk density. Combining both measurements can yield better site characterization and accurate estimation of sediment properties for a better prediction of sediment dynamics. / Doctor of Philosophy / As the impacts of climate change seem to worsen, the likelihood of extreme events increases. This includes more frequent and severe events such as erosion, storm surges, melting glaciers, and sea level rise that impacts coastlines and coastal infrastructure. The increase in water levels increases the frequency of coastal hazards and flooding. These events result in devastating consequences, economically and environmentally, and disrupt people's lives all over the world. To adapt and reduce the severity of these consequences, there is a need to capture the changes in seabed, and a better understanding of seabed properties and their erodibility. This requires a reliable site characterization and an accurate estimate of seabed properties, which remain a challenge for different marine environments.
There exist different site investigation methods to estimate seabed sediment properties that fall under geotechnical or geophysical types. One of the common geotechnical methods is a Portable free fall penetrometer (PFFPs), that presents a robust and economical tool for a rapid site assessment of topmost seabed layers. Geophysical tools, and mainly acoustic methods, are also often used to complement geotechnical methods due to their ability to cover vast areas in efficient time. However, both methods still face limitations in assessing seabed layers and properties. Therefore, the objective of this research is to develop a framework that paves the way for a reliable assessment of seabed properties using geotechnical and geophysical methods.
Both methods were utilized for data collection in different locations across the US: Delaware Bay, Delaware; Pea Island, North Carolina; York River, Virginia; Potomac River, Maryland. Three additional sites Guadalupe, Brazos River, and Colorado Rivers, Texas were surveyed post hurricane Harvey that resulted in extreme flooding events. The measurements are collected from different coastal environments. This better account for the diversity in seabed to achieve a more generalized and well-integrated methodology to assess seabed layers under different conditions.
|
268 |
Anisotropic media and the determination of subsurface velocity by the use of surface seismic reflection dataVossler, Donald Alan 08 July 2010 (has links)
Velocity anisotropy is present at a point in a medium if the seismic velocity in one direction in general differs from that in another direction. The problems associated with the determination of subsurface velocity in anisotropic media by the use of surface seismic reflection data are analyzed. Previous studies of anisotropy in exploration seismology required bore-hole data as well as surface data to detect the presence of velocity anisotropy.
Three special types of wave propagation are of interest in reflection seismology, in addition to the general case. The theory of isotropic media is commonly utilized in exploration seismology. Elliptical anisotropy has been the method for handling anisotropic media in the past. The theory of transversely isotropic media is studied in detail since this is a reasonable anisotropy model for exploration use. Layered periodic isotropic structures are considered because of the relationships between the elastic coefficients that yield transverse isotropy in the limiting case for which the isotropic lavers are thin in comparison to the wavelength of a propagating disturbance.
Synthetic common-depth-point reflection seismic traces were generated for a uniformly anisotropic halfspace, a model with seismic velocity increasing linearly with depth, velocity increasing stepwise with depth, a buried anisotropic interval in an otherwise isotropic section, and models characterized by the dip varying continuously with depth. Correlation methods (velocity analysis) are developed for the determination of rms velocity vs. two-way reflection time for both isotropic and anisotropic (transversely isotropic) media. These methods are applied to the models discussed above for varying amounts of anisotropy for each model. When the surfaces defined by the velocity analysis correlation matrices are integrated to determine the volume under the surface, it is possible to determine within about one percent the degree of anisotropy in a uniformly anisotropic medium. In a medium of varying anisotropy, it does not appear possible to obtain the same degree of accuracy as for the uniform case. Two isotropic dipping layer models were studied to determine the effects of dip on velocity analysis. The effects of dip are such that the analysis methods yield erroneous results for dips in excess of about 10-12 degrees for the models studied. Random noise degrades the velocity analysis (i.e., the magnitudes of the correlation peaks), but does not affect the accuracy of the results. Lateral velocity gradients appear to have no discernible effects on a velocity analysis for the models studied.
Results of this study indicate that the compressional wave data normally used in reflection seismic work may not be useful for the detection of velocity anisotropy. Shear wave (SV) data, on the other hand, are ideally suited to this purpose. Hmvever, the necessity of shear wave data for the detection of anisotropy may limit these methods strictly to land use. This study indicates that the probability of detecting anisotropy by using surface methods is sufficiently high to warrant field testing. / Ph. D.
|
269 |
Geophysical Survey and the Emergence of Underground Archaeological Landscapes: The Heart of Neolithic Orkney World Heritage Site.Card, N., Gater, J.A., Gaffney, Christopher F., Wood, E. January 2007 (has links)
No / As the essays in this book demonstrate, Prehistoric and Romano-British landscape studies have come a long way since Hoskins, whose work reflected the prevailing 'Celtic' ethnological narrative of Britain before the medieval period. The contributors present a stimulating survey of the subject as it is in the early twenty-first century, and provide some sense of a research frontier where new conceptualisations of 'otherness' and new research techniques are transforming our understanding.
|
270 |
What do all the numbers mean? Making sure that we have all the pieces of the puzzle.Sparrow, Thomas, Gaffney, Christopher F., Schmidt, Armin R. January 2009 (has links)
No / No Abstract
|
Page generated in 0.0672 seconds