• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 42
  • 39
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 8
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 439
  • 90
  • 86
  • 81
  • 71
  • 64
  • 56
  • 34
  • 34
  • 34
  • 33
  • 32
  • 32
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Holistic Mine Management By Identification Of Real-Time And Historical Production Bottlenecks

Kahraman, Muhammet Mustafa January 2015 (has links)
Mining has a long history of production and operation management. Economies of scales have changed drastically and technology has transformed the mining industry significantly. One of the most important technological improvements is increased equipment, human, and plant tracking capabilities. This provided a continuous data stream to the decision makers, considering dynamic operational conditions. However, managerial approaches did not change in parallel. Even though many process improvement tools using equipment/human/plant tracking capabilities were developed (Fleet Management Systems, Plant Monitoring Systems, Workforce Management Systems etc.), to date there is no holistic approach or system to manage the entire value chain in mining. Mining operations are designed and managed around the already known system designated bottlenecks. However, contrary to common belief in mining, bottlenecks are not static. They can shift from one process or location to another. It is important for management to be aware of the new bottlenecks, since their decisions will be effected. Therefore, identification of true bottlenecks in real-time will help tactical level decisions (use of buffers, resource transfer), and identification of historical bottlenecks will help strategic-level decisions (investments, increasing capacity etc.). This thesis aims to address the managerial focus on the true bottlenecks. This is done by first identifying and ranking true bottlenecks in the system. The study proposes a methodology for creating Bottleneck Identification Model (BIM) that can identify true bottlenecks in a value chain in real-time or historically, depending on the available data. This approach consists of three phases to detect and rank the bottlenecks. In the first phase, the system is defined and variables are identified. In the second phase, the capacity, rates, and buffers are computed. In the third phase, considering particularities of the mine exceptions are added by taking mine characteristics into account, and bottlenecks are identified and ranked.
302

Concepts Used to Analyze and Determine Rock Slope Stability for Mining & Civil Engineering Applications

Ureel, Scott Daniel January 2014 (has links)
Slope stability plays an important role in rock engineering. During the design, construction and post design phases of rock slope stability, engineers and geologists need to pay close attention to the rock conditions within the rock slope to prevent slope failures, protect employees and maintain economic profit. This dissertation is based on a general four step procedure to construct and maintain rock slope stability with confidence. These four steps include field investigations, material testing and rock strength database, slope modelling and slope monitoring. The author provides past, present and alternatives methods for each step for the introduced slope stability procedure. Specific topics within each step are investigated displaying results, recommendations and conclusions. Step one involves data collection during field investigations for rock slope design. Orientation of rock core during drilling programs has become extremely pertinent and important for slope stability and underground mining operations. Orientation is needed to provide essential data to describe the structure and properties of discontinuities encountered during the design process to understand favourable and unfavourable conditions within a rock slope and underground openings. This chapter examines and discusses the limitations and benefits of four methods of obtaining borehole discontinuity orientations from drilling programs including clay-imprint, ACT I, II, III Reflex, EZY-MARK, and OBI/ABI Televiewer systems. Results, recommendations and conclusions are provided in this study. During step two to maintain rock slope stability, a rock strength database was created and used to correlate and compare RQD values to rock abrasion, shear strength and other rock characterization methods. Rock abrasion plays a significant role in geotechnical design, tunneling operations and the safety of foundations from scour; however, rock abrasion can be used to develop higher confidence in important parameters such as RQD and hardness. More rock abrasivity research is needed to provide a more accurate and compatible method for all subsurface material properties used in mining and civil engineering projects. This report will provide simple correlations relating abrasion resistance to RQD, UCS, Geological Strength Index (GSI) and Rock Mass Rating (RMR) of metamorphic rock. Results, discussions and conclusions are provided. Step 3 to determine rock slope stability entails utilizing computer modeling to predict failure conditions and wear rock mass properties. Computer modeling and slope monitoring for rock slopes have become essential to assess factor of safety (FOS) values to predict slope instability and estimate potential failure. When utilizing computer models, the limit equilibrium method (LEM) provides FOS values according to force and moment equilibrium; the shear strength reduction (SSR) technique calculates FOS using stress- and deformation-based analyses. Currently, both methods are prevalent in the engineering industry and applied by geotechnical engineers to analyze and determine stability in rock slopes for mining and civil engineering projects. Slope modeling techniques are then used to observe slope conditions and predict when slope failure may occur (FOS = 1.0). Comparison, results and conclusions are presented. Lastly, the dissertation (step 4: slope monitoring) will investigate past studies of FOS comparisons, review calculation methods and provide procedures and results using remote sensing data. The main objective of the dissertation is to provide engineers with essential information needed to ensure high confidence in factor of safety predictions and how alternative methods can be utilized. Recommendations, future research and conclusions regarding FOS and slope monitoring are provided within the dissertation.
303

Rock Slope Stability Investigations In Three Dimensions For A Part Of An Open Pit Mine In USA

Shu, Biao January 2014 (has links)
Traditional slope stability analysis and design methods, such as limit equilibrium method and continuum numerical methods have limitations in investigating three dimensional large scale rock slope stability problems in open pit mines associated with stress concentrations and deformations arising due to intersection of many complex major discontinuity structures and irregular topographies. Analytical methods are limited to investigating kinematics and limit equilibrium conditions based on rigid body analyses. Continuum numerical methods fail to simulate the detachment of rock blocks and large displacements and rotations. Therefore, there is an urgent need to try some new methods to have a deeper understanding of the open pit mine rock slope stability problems. The intact rock properties and discontinuity properties for both DRC and DP rock formations that exist in the selected open pit mine were determined from tests conducted on rock samples collected from the mine site. Special survey equipment (Professor Kulatilake owns) which has a total station, laser scanner and a camera was used to perform remote fracture mapping in the research area selected at the mine site. From remote fracture mapping data, the fracture orientation, spacing and density were calculated in a much refined way in this dissertation compared to what exist in the literature. Discontinuity orientation distributions obtained through remote fracture mapping agreed very well with the results of manual fracture mapping conducted by the mining company. This is an important achievement in this dissertation compared to what exist in the literature. GSI rock quality system and Hoek-Brown failure criteria were used to estimate the rock mass properties combining the fracture mapping results with laboratory test results of intact rock samples. Fault properties and the DRC-DP contact properties were estimated based on the laboratory discontinuity test results. A geological model was built in a 3DEC model including all the major faults, DRC-DP contact, and two stages of rock excavation. The built major discontinuity system of 44 faults in 3DEC with their real orientations, locations and three dimensional extensions were validated successfully using the fault geometry data provided by the mining company using seven cross sections. This was a major accomplishment in this dissertation because it was done for the first time in the world. Numerical modeling was conducted to study the effect of boundary conditions, fault system and lateral stress ratio on the stability of the considered rock slope. For the considered section of the rock slope, the displacements obtained through stress boundary conditions were seemed more realistic than that obtained through zero velocity boundary conditions (on all four lateral faces). The fault system was found to play an important role with respect to rock slope stability. Stable deformation distributions were obtained for k₀ in the range of 0.4 to 0.7. Because the studied rock mass is quite stable, it seems that an appropriate range for k₀ for this rock mass is between 0.4 and 0.7. Seven monitoring points were selected from the deformation monitoring conducted at the open pit mine site by the mining company using a robotic total station to compare with numerical predictions. The displacements occurred between July 2011 and July 2012 due to the nearby rock mass excavation that took place during the same period were compared between the field monitoring results and the predicted numerical modeling results; a good agreement was obtained. This is a huge success in this dissertation because such a comparison was done for the first time in the world. In overall, the successful simulation of the rock excavation during a certain time period indicated the possibility of using the procedure developed in this dissertation to investigate rock slope stability with respect to expected future rock excavations in mine planning.
304

Comparisons of spherical shell and plane-layer mantle convection models

O'Farrell, Keely Anne 14 January 2014 (has links)
Plane-layer geometry convection models remain useful for modelling planetary mantle dynamics however they yield significantly warmer mean temperatures than spherical shell models. For example, in a uniform property spherical shell with the same radius ratio, f, as the Earth's mantle; a bottom heating Rayleigh number, Ra, of 10^7 and a nondimensional internal heating rate, H, of 23 (arguably Earth-like values) are insufficient to heat the mean temperature, θ, above the mean of the non-dimensional boundary value temperatures (0.5), the temperature in a plane-layer model with no internal heating. This study investigates the impact of this geometrical effect in convection models featuring uniform and stratified viscosity. To address the effect of geometry, heat sinks are implemented to lower the mean temperature in 3D plane-layer isoviscous convection models. Over 100 models are analyzed, and their mean temperatures are used to derive a single equation for predicting θ, as a function of Ra, H and f in spherical and plane-layer systems featuring free-slip surfaces. The inclusion of first-order terrestrial characteristics is introduced to quantitatively assess the influence of system geometry on planetary scale simulations. Again, over 100 models are analyzed featuring a uniform upper mantle viscosity and a lower mantle viscosity that increases by a factor of 30 or 100. An effective Rayleigh number, Raη, is defined based on the average viscosity of the mantle. Equations for the relationship between θ, Raη, and H are derived for convection in a spherical shell with f = 0.547 and plane-layer geometries. These equations can be used to determine the appropriate heating rate for a plane-layer convection model to emulate spherical shell convection mean temperatures for effective Rayleigh numbers comparable to the Earth’s value and greater. Comparing cases with the same H and Raη, the increased lower mantle viscosity amplifies the mismatch in mean temperatures between spherical shell and plane-layer models. These findings emphasize the importance of adjusting heating rates in plane-layer geometry models and have important implications for studying convection with temperature-dependent parameters in plane-layer systems. The findings are particularly relevant to the study of convection in super-Earths where full spherical shell calculations remain intractable.
305

Diapirism on Venus and the Early Earth and The thermal effect of fluid flows in AECL's Tunnel Sealing Experiment

Robin, Catherine M. I. 01 September 2010 (has links)
Flow instabilities occur at all scales in planetary systems. In this thesis we examine three cases of such instabilities, on three very different length scales. In the first part, we test the idea that Archean granite-greenstone belts (GGBs) form by crustal diapirism, or Rayleigh-Taylor instabilities. GGBs are characterized by large granitic domes (50-100 km in diameter) embedded in narrow keel-shaped greenstones. They are ubiquitous in Archean (> 2.5 Ga) terrains, but rare thereafter. We performed finite element calculations for a visco-elastic, temperature-dependent, non-Newtonian crust under conditions appropriate for the Archean, which show that dense low-viscosity volcanics overlying a felsic basement will overturn diapirically in as little as 10 Ma, displacing as much as 60 % of the volcanics to the lower crust. This surprisingly fast overturn rate suggests that diapiric overturn dominated crustal tectonics in the hot conditions of the Early Earth, becoming less important as the Earth cooled. Moreover, the deposition of large volumes of wet basaltic volcanics to the lower crust may provide the source for the formation of the distinctly Archean granitic rocks which dominate Earth's oldest continents. The second part examines the origin of Venusian coronae, circular volcanic features unique to Venus. Coronae are thought to result from small instabilities (diapirs) from the core-mantle boundary, which are typical of stagnant-lid convection. However, most young coronae are located in a region surrounded by long-lived hotspots, typical of a more active style of mantle convection. Using analogue experiments in corn syrup heated from below, we show that the co-existence of diapirs and long-lived mantle plumes are a direct consequence of the catastrophic overturn of the cold Venusian lithosphere thought to have occurred ~ 700 Ma ago. In the last part we analyze the thermal effect of fluid flow through a full-scale experiment testing clay and concrete tunnel seals in a Deep Geological Repository for nuclear was finite element software, we were able to show that the formation of fissures in the heated chamber between the two seals effectively limited heat flow, and could explain the discrepancy between the predicted and measured temperatures.
306

Comparisons of spherical shell and plane-layer mantle convection models

O'Farrell, Keely Anne 14 January 2014 (has links)
Plane-layer geometry convection models remain useful for modelling planetary mantle dynamics however they yield significantly warmer mean temperatures than spherical shell models. For example, in a uniform property spherical shell with the same radius ratio, f, as the Earth's mantle; a bottom heating Rayleigh number, Ra, of 10^7 and a nondimensional internal heating rate, H, of 23 (arguably Earth-like values) are insufficient to heat the mean temperature, θ, above the mean of the non-dimensional boundary value temperatures (0.5), the temperature in a plane-layer model with no internal heating. This study investigates the impact of this geometrical effect in convection models featuring uniform and stratified viscosity. To address the effect of geometry, heat sinks are implemented to lower the mean temperature in 3D plane-layer isoviscous convection models. Over 100 models are analyzed, and their mean temperatures are used to derive a single equation for predicting θ, as a function of Ra, H and f in spherical and plane-layer systems featuring free-slip surfaces. The inclusion of first-order terrestrial characteristics is introduced to quantitatively assess the influence of system geometry on planetary scale simulations. Again, over 100 models are analyzed featuring a uniform upper mantle viscosity and a lower mantle viscosity that increases by a factor of 30 or 100. An effective Rayleigh number, Raη, is defined based on the average viscosity of the mantle. Equations for the relationship between θ, Raη, and H are derived for convection in a spherical shell with f = 0.547 and plane-layer geometries. These equations can be used to determine the appropriate heating rate for a plane-layer convection model to emulate spherical shell convection mean temperatures for effective Rayleigh numbers comparable to the Earth’s value and greater. Comparing cases with the same H and Raη, the increased lower mantle viscosity amplifies the mismatch in mean temperatures between spherical shell and plane-layer models. These findings emphasize the importance of adjusting heating rates in plane-layer geometry models and have important implications for studying convection with temperature-dependent parameters in plane-layer systems. The findings are particularly relevant to the study of convection in super-Earths where full spherical shell calculations remain intractable.
307

Diapirism on Venus and the Early Earth and The thermal effect of fluid flows in AECL's Tunnel Sealing Experiment

Robin, Catherine M. I. 01 September 2010 (has links)
Flow instabilities occur at all scales in planetary systems. In this thesis we examine three cases of such instabilities, on three very different length scales. In the first part, we test the idea that Archean granite-greenstone belts (GGBs) form by crustal diapirism, or Rayleigh-Taylor instabilities. GGBs are characterized by large granitic domes (50-100 km in diameter) embedded in narrow keel-shaped greenstones. They are ubiquitous in Archean (> 2.5 Ga) terrains, but rare thereafter. We performed finite element calculations for a visco-elastic, temperature-dependent, non-Newtonian crust under conditions appropriate for the Archean, which show that dense low-viscosity volcanics overlying a felsic basement will overturn diapirically in as little as 10 Ma, displacing as much as 60 % of the volcanics to the lower crust. This surprisingly fast overturn rate suggests that diapiric overturn dominated crustal tectonics in the hot conditions of the Early Earth, becoming less important as the Earth cooled. Moreover, the deposition of large volumes of wet basaltic volcanics to the lower crust may provide the source for the formation of the distinctly Archean granitic rocks which dominate Earth's oldest continents. The second part examines the origin of Venusian coronae, circular volcanic features unique to Venus. Coronae are thought to result from small instabilities (diapirs) from the core-mantle boundary, which are typical of stagnant-lid convection. However, most young coronae are located in a region surrounded by long-lived hotspots, typical of a more active style of mantle convection. Using analogue experiments in corn syrup heated from below, we show that the co-existence of diapirs and long-lived mantle plumes are a direct consequence of the catastrophic overturn of the cold Venusian lithosphere thought to have occurred ~ 700 Ma ago. In the last part we analyze the thermal effect of fluid flow through a full-scale experiment testing clay and concrete tunnel seals in a Deep Geological Repository for nuclear was finite element software, we were able to show that the formation of fissures in the heated chamber between the two seals effectively limited heat flow, and could explain the discrepancy between the predicted and measured temperatures.
308

Physical modeling of local scour around complex bridge piers

Lee, Seung Oh 02 March 2006 (has links)
Local scour around bridge foundations has been recognized as one of the main causes of bridge failures. The objective of this study is to investigate the relationships among field, laboratory, and numerical data for the purpose of improving scour prediction methods for complex bridge piers. In this study, three field sites in Georgia were selected for continuous monitoring and associated laboratory models were fabricated with physical scale ratios that modeled the full river and bridge cross sections to consider the effect of river bathymetry and bridge geometry. Three different sizes of sediment and several geometric scales of the bridge pier models were used in this study to investigate the scaling effect of relative sediment size, which is defined as the ratio of the pier width to the median sediment size. The velocity field for each bridge model was measured by the acoustic Doppler velocimeter (ADV) to explain the complicated hydrodynamics of the flow field around bridge piers as guided by the results from a numerical model. In each physical model with river bathymetry, the comparison between the results of laboratory experiments and the measurements of prototype bridge pier scour showed good agreement for the maximum pier scour depth at the nose of the pier as well as for the velocity distribution upstream of each bridge pier bent. Accepted scour prediction formulae were evaluated by comparison with extensive laboratory and field data. The effect of relative sediment size on the local pier scour depth was examined and a modified relationship between the local pier scour depth and the relative sediment size was presented. A useful methodology for designing physical models was developed to reproduce and predict local scour depth around complex piers considering Froude number similarity, flow intensity, and relative sediment size.
309

The application of a two-dimensional sediment transport model in a Cumberland Plateau mountainous stream reach with complex morphology and coarse substrate

Johnson, Daniel Hale. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Tennessee, Knoxville, 2008. / Title from title page screen (viewed on Sept. 23, 2009). Thesis advisor: John S. Schwartz. Vita. Includes bibliographical references.
310

Walking through time : a window onto the prehistory of the Yorkshire Dales through multi-method, non-standard survey approaches

Saunders, Mary K. January 2017 (has links)
The large-scale field-systems, ubiquitous across upland and marginal parts of the Yorkshire Dales, are insecurely dated and poorly understood. Apart from some sporadic academic interest, the archaeology of this region has yet to receive the level of scholarly attention it deserves. The research presented here involved an intensive investigation of an area near Grassington, Upper Wharfedale, UK. Detailed field analysis revealed a section of one of these field-systems to be only a single element in a complex, multi-layered prehistoric landscape, which it is proposed may have roots as far back as the early Neolithic. Contextualisation of the survey area against palynological data, radiocarbon dates and comparative material moves the date of inception of the field-systems back to the middle Bronze Age, some 1000 years earlier than is currently assumed. The combination of empirical data and theoretical ideas has allowed a relative chronology to be determined in the survey area, together with the creation of a testable hypothesis surrounding the development of Upper Wharfedale and the wider Yorkshire Dales through prehistory. A sense of place and the veneration of natural places are key themes within this landscape and it was possible through these to draw out elements of prehistoric society and to show the evolution of ideas such as land tenure and monument significance. This dual empirical-theoretical approach is novel in upland landscape archaeology in the UK and is shown here to have significant merit.

Page generated in 0.0596 seconds