Spelling suggestions: "subject:"geophysics anda seismology"" "subject:"geophysics anda sismology""
101 |
Development and application of some quantitative stratigraphic techniques to the Coos Bay coalfield, a Tertiary fluvio-deltaic complex in southwestern OregonTitus, Willard Sidney, III 01 January 1987 (has links)
A computer technique for interpreting geophysical logs of drill-holes in quantitative lithologic terms has been developed and tested on the deposits of the late Eocene Coaledo Formation, a well-studied fluvio-deltaic complex in southwestern Oregon. The technique involves the use of induced and natural gamma logs for separation of coal and claystone from coarse-grained detrital rocks and the use of the ratio of resistivity and natural gamma responses (defined here as the "grain size index") to divide the coarse elastic rocks into a series of textural classes corresponding to the Wentworth-Odden particle size scale.
|
102 |
Geologic Map of Tennessee (East Sheet) - 1966Tennessee Department of Conservation 01 January 1966 (has links)
Geologic map of Tennessee published in 1966 by the Tennessee Department of Conservation, Division of Geology. William D. Hardeman supervised and directed this geologic mapping and the compilation, preparation, and editing of this map. The source material for the map includes all recent (as of 1966) detailed published geologic maps and much recent unpublished geologic mapping that was begun and completed by the Division of Geology for the specific purpose of making this map of uniform accuracy through the state.
The scale is 1:250,000 with the lower half including a detailed explanation including symbols/colors for rock types, mountain formations, and other geologic features. The sources of geologic information is also included.
Physical copy resides in the Government Information, Law and Maps Department of East Tennessee State University’s Sherrod Library. / https://dc.etsu.edu/rare-maps/1016/thumbnail.jpg
|
103 |
Geologic Hazards Map of Tennessee (1977)Tennessee Department of Conservation 01 January 1977 (has links)
Geologic hazards map of Tennessee published in 1977 by the Tennessee Department of Conservation, Division of Geology. Compiled by Robert A. Miller, assisted by Preston D. Sitterly. The preparation of this report was financed in part through a comprehensive planning grant form the Department of Housing and Urban Development.
The lower half includes an explanation of various geographic hazards and how to identify those areas on the map. A list of selected references is also included.
Physical copy resides in the Government Information, Law and Maps Department of East Tennessee State University’s Sherrod Library. / https://dc.etsu.edu/rare-maps/1018/thumbnail.jpg
|
104 |
Quantitative, non-destructive estimates of forest coarse root biomass using 3-D ground-penetrating radar (GPR)Molon, Michelle M. 10 1900 (has links)
<p>We evaluated 3-D imaging of coarse root structure and biomass using ground-penetrating radar (GPR). GPR surveys were conducted in a white pine forest in southern Ontario, Canada. GPR profiles were obtained across two test plots (6 and 17 m<sup>2</sup> area), using 1-GHz GPR and a MEMS (micro-electro-mechanical systems) accelerometer. Test plot surveys evaluated the effects of micro-topography, soil moisture content, and root diameter and spacing. In addition, with the aid of the outcome of the control test plots two other plots (25 and 400 m<sup>2 </sup>area) were surveyed with varying line sample spacing to investigate the restraints on resolution brought about by line sampling density.</p> <p>Accounting for antenna tilt is necessary to determine an accurate and more precise position of root mass. The antenna tilt was >45<sup>o</sup> pitch, >28<sup>o</sup> roll and up to 10<sup>o</sup> yaw due to surface micro-topography of the forest floor. Vector 3-D imaging enhanced the diffraction amplitude (15.5% increase) and centralized the position of the root. Radial surveys provided root continuity and produced better root imaging.</p> <p>GPR largely underestimates coarse root biomass when a line spacing of 25 cm is used. However similar results are found with smaller line spacing (12.5 cm). A maximum line spacing of 10 cm provided continuous root structure and differentiation of roots spaced 10 cm apart and greater. A sampling line spacing of 5 cm and an inline sampling interval of 0.5 cm in low soil moisture conditions provided the detection of roots that were a minimum of 1.4 cm in diameter.</p> / Master of Science (MSc)
|
105 |
High-resolution near-shore geophysical survey using an Autonomous Underwater Vehicle (AUV) with integrated magnetometer and side-scan sonarHrvoic, Doug January 2014 (has links)
<p>Small, low cost Autonomous underwater vehicles (AUVs) provide ideal platforms for shallow water survey, as they are capable of unmanned navigation and can be programmed to acquire data at constant depth, or constant altitude above the seabed. AUVs can be deployed under most sea states and are unaffected by vessel motions that often degrade sonar and magnetometer data quality. The integration of sonar and magnetometer sensors on AUV’s is challenging, however, due to limited payload and strong magnetic fields produced by the vehicle motor.</p> <p>In this study, a Marine Magnetics Explorer Overhauser magnetometer was mated to a portable AUV (OceanServer Iver2) creating the first practical AUV- deployed magnetic survey system. To eliminate magnetic interference from the AUV, the magnetometer was tethered to the AUV with a 5 m tow cable, as determined by static and dynamic instrument testing. The results of the magnetic tests are presented, along with field data from a shallow water test area in Lake Ontario near Toronto, Canada. AUV-acquired magnetic survey data were compared directly with a conventional boat-towed magnetic survey of the same area. The AUV magnetic data were of superior quality despite being collected in rough weather conditions that would have made conventional survey impossible. The resulting high-resolution total magnetic intensity and analytic signal maps clearly identify several buried and surface ferrometallic targets that were verified in 500-kHz side- scan sonar imaging and visual inspection by divers.</p> / Master of Science (MSc)
|
106 |
The Effect of Disturbance and Freshwater Availability on Lower Florida Keys’ Coastal Forest DynamicsOgurcak, Danielle E 06 November 2015 (has links)
Coastal forest retreat in the Florida Keys during the 20th century has been attributed to a combination of sea level rise and hurricane storm surge impacts, but the interactions between these two disturbances leading to forest decline are not well understood. The goal of my research was to assess their effects over a period spanning more than two decades, and to examine the relationships between these press and pulse disturbances and freshwater availability in pine rockland, hardwood hammock, and supratidal scrub communities. Impacts and recovery from two storm surges, Hurricanes Georges (1998) and Wilma (2005), were assessed with satellite-derived vegetation indices and multiple change detection techniques. Impacts were greater at lower elevations, and in hardwood hammock, spectral signatures indicative of plant stress and productivity returned to pre-disturbance levels within a few years. In pine rockland, impacts were predominately related to Hurricane Wilma, however, a similar return to pre-disturbance conditions was absent, suggesting that trajectories of disturbance recovery differed between the two communities. Long-term monitoring of forest composition, structure, and groundwater salinity showed that compositional shifts in the low shrub stratum were associated with salinization of the freshwater resource attributable to sea level rise. Throughout the course of twelve months of climate and groundwater monitoring (2011-2012), groundwater salinity generally decreased in response to large precipitation events. Modeling of geophysical data indicated that groundwater salinity was an important predictor of community type. Isotopic analysis of d18O in plant stem water and foliar d13C was used to determine temporal and spatial patterns in water use and plant stress in two community dominants, slash pine, Pinus elliottii var. densa, and buttonwood, Conocarpus erectus. Both species relied heavily on groundwater, and plant stress was related to increasing groundwater salinity. The results of this work suggest that the interaction of press and pulse disturbances drive changes in community composition by causing mortality of salt-sensitive species and altering the freshwater resource.
|
107 |
Hydrogeophysical Characterization of Anisotropy in the Biscayne Aquifer Using Geophysical MethodsYeboah-Forson, Albert 13 June 2013 (has links)
The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.
|
108 |
Time Domain SAR Processing with GPUs for Airborne PlatformsLagoy, Dustin 24 March 2017 (has links)
A time-domain backprojection processor for airborne synthetic aperture radar (SAR) has been developed at the University of Massachusetts’ Microwave Remote Sensing Lab (MIRSL). The aim of this work is to produce a SAR processor capable of addressing the motion compensation issues faced by frequency-domain processing algorithms, in order to create well focused SAR imagery suitable for interferometry. The time-domain backprojection algorithm inherently compensates for non-linear platform motion, dependent on the availability of accurate measurements of the motion. The implementation must manage the relatively high computational burden of the backprojection algorithm, which is done using modern graphics processing units (GPUs), programmed with NVIDIA’s CUDA language. An implementation of the Non-Equispaced Fast Fourier Transform (NERFFT) is used to enable efficient and accurate range interpolation as a critical step of the processing. The phase of time- domain processed imagery is dif erent than that of frequency-domain imagery, leading to a potentially different approach to interferometry. This general purpose SAR processor is designed to work with a novel, dual-frequency S- and Ka-band radar system developed at MIRSL as well as the UAVSAR instrument developed by NASA’s Jet Propulsion Laboratory. These instruments represent a wide range of SAR system parameters, ensuring the ability of the processor to work with most any airborne SAR. Results are presented from these two systems, showing good performance of the processor itself.
|
109 |
Faulty Measurements and Shaky Tools: An Exploration into Hazus and the Seismic Vulnerabilities of Portland, ORBrannon, Brittany Ann 27 August 2013 (has links)
Events or forces of nature with catastrophic consequences, or "natural disasters," have increased in both frequency and force due to climate change and increased urbanization in climate-sensitive areas. To create capacity to face these dangers, an entity must first quantify the threat and translate scientific knowledge on nature into comprehensible estimates of cost and loss. These estimates equip those at risk with knowledge to enact policy, formulate mitigation plans, raise awareness, and promote preparedness in light of potential destruction. Hazards-United States, or Hazus, is one such tool created by the federal government to estimate loss from a variety of threats, including earthquakes, hurricanes, and floods. Private and governmental agencies use Hazus to provide information and support to enact mitigation measures, craft plans, and create insurance assessments; hence the results of Hazus can have lasting and irreversible effects once the hazard in question occurs. This thesis addresses this problem and sheds light on the obvious and deterministic failings of Hazus in the context of the probable earthquake in Portland, OR; stripping away the tool's black box and exposing the grim vulnerabilities it fails to account for.
The purpose of this thesis is twofold. First, this thesis aims to examine the critical flaws within Hazus and the omitted vulnerabilities particular to the Portland region and likely relevant in other areas of study. Second and more nationally applicable, this thesis intends to examine the influence Hazus outputs can have in the framing of seismic risk by the non-expert public. Combining the problem of inadequate understanding of risk in Portland with the questionable faith in Hazus alludes to a larger, socio-technical situation in need of attention by the academic and hazard mitigation community. This thesis addresses those issues in scope and adds to the growing body of literature on defining risk, hazard mitigation, and the consequences of natural disasters to urban environments.
|
Page generated in 0.0768 seconds