• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 107
  • 107
  • 65
  • 17
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Spatio-temporal History of Fluid-rock Interaction in the Hurricane Fault Zone

Koger, Jace 01 May 2017 (has links)
The Hurricane Fault is a 250-km long, west dipping, Basin and Range-bounding normal fault in SW Utah and NW Arizona that initiated in the mid-Miocene to Pliocene. It has been primarily active in the Quaternary, with slip rates of 0.2 – 0.6 mm/yr. There are multiple hot springs along its 250-km length and multiple late Tertiary-Quaternary basaltic centers broadly parallel the fault. Possible sources of hot spring fluids include deeply-circulated meteoric water that experienced water-rock exchange at high temperatures (>100 °C) and deep-seated crustal fluids. Aside from the source of modern hot spring fluids and heat, questions about the spatio-temporal history of fluid flow along the Hurricane Fault remain unaddressed. Abundant damage zone veins, cements, and host rock alteration are present, indicative of past fluid flow. Carbonate veining and cementation is a key feature of the Hurricane Fault zone, and is the primary feature exploited to characterize the thermochemical history of fault-related paleofluids. A combination of macroscopic and microscopic carbonate observations, chemical composition, and precipitation temperature of calcite veins was used to determine past water-rock diagenetic interaction and vein evolution in the Hurricane Fault zone. Calcite iv in concretions and veins from the damage zone of the fault shows a wide range of carbon and oxygen stable isotope ratios, with δ13CPDB from -4.5 to 3.8 ‰ and δ18OPDB from -17.7 to -1.1‰. Fluid inclusion microthermometry homogenization temperatures range from 45 to 160 °C, with fluid salinities of 0 to 15 wt% NaCl calculated from melting temperatures. Combining the two datasets, two main fluids that interacted with the fault zone are inferred: (1) basin brines with a δ 18OSMOW of 9.2 ‰ and (2) altered meteoric fluids with a δ 18OSMOW of -11.9 to -8.3 ‰. Calculated dissolved CO2 δ 13CPDB (-8.5 to -1.3 ‰) indicates mixed marine carbonate and organic or magmatic sources. Fault zone diagenesis was caused by meteoric water infiltration and interaction with carbonate-rich rocks, mixed with upwelling basin brines. Fluid-rock interaction is concentrated in the damage zone, where fracture-related permeability was utilized for fluid flow. A distinct mineralization event punctuated this history, associated with basin brines that were chemically influenced by nearby basaltic magmatism. This implies a hydrologic connection between the fault and regional magmatism.
92

High-resolution lake-based magnetic mapping and modelling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario

Suttak, Philip A. 10 1900 (has links)
<p>Magnetic surveys are one of the principal geophysical methods employed to map the structure of basement rocks deeply buried below cover strata. In resource studies, aeromagnetic surveys are commonly acquired at regional scales (100-1000’s km2) while very few studies have attempted to resolve basement structures at site-scale (<10 >km2). In this study, high-resolution lake-based magnetic survey methods were evaluated for mapping of deeply-buried basement faults (Küçükçekmece Lagoon, Turkey; 6 km2) and a suspected meteorite impact crater (Charity Shoal, Lake Ontario; 9 km2). Total magnetic intensity (TMI) surveys were acquired using a single Overhauser magnetometer with 50-150 m line spacing. Interpretation of the magnetic data was aided by forward modelling of TMI data and depth to basement estimates using Euler and analytic signal methods. Total magnetic intensity (TMI) maps of Küçükçekmece Lagoon identify several north-northwest trending (340-350°) magnetic lineaments that are aligned with strike-slip faults mapped from offshore seismic data. The pattern of magnetic anomalies in the lagoon is consistent with extensional normal faulting of bedrock and lake sediments. Magnetic results from Charity Shoal reveal a large (>1400 nT) parabolic-shaped magnetic anomaly centered over the crater basin and an annular magnetic high (40-50 nT) corresponding with the basin rim. Modelling results exclude the origin of the CSS as a shallow glacial erosional or karst sinkhole feature and are most consistent with a pre-Paleozoic meteorite impact in the Precambrian basement.</p> / Master of Science (MSc)
93

Use Of Laboratory Geophysical And Geotechnical Investigation Methods To Characterize Gypsum Rich Soils

Bhamidipati, Raghava A. 01 January 2016 (has links)
Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.
94

CONSERVATION LIMNOGEOLOGY AND BENTHIC HABITAT MAPPING IN CENTRAL LAKE TANGANYIKA (TANZANIA)

Lucas, Joseph S. 01 January 2018 (has links)
Small scale protected zones are valuable for helping the health and productivity of fisheries at Lake Tanganyika (East Africa). Spatial placement of protected areas relies on accurate maps of benthic habitats, consisting of detailed bathymetry data and information on lake-floor substrates. This information is unknown for most of Lake Tanganyika. Fish diversity is known to correlate with rocky substrates in ≤ 30 m water depth, which provide spawning grounds for littoral and pelagic species. These benthic habitats form important targets for protected areas, if they can be precisely located. At the NMVA, echosounding defined the position of the 30-m isobath and side-scan sonar successfully discriminated among crystalline basement, CaCO3-cemented sandstones, mixed sediment, and shell bed substrates. Total area encompassed from the shoreline to 30 m water depth is ~21 km2 and the distance to the 30-m isobath varies with proximity to deltas and rift-related faults. Total benthic area defined by crystalline basement is ~1.6 km2, whereas the total area of CaCO3-cemented sandstone is 0.2 km2. Crystalline basement was present in all water depths (0-30 m), whereas CaCO3-cemented sandstones were usually encountered in water ≤ 5 m deep. Spatial organization of rocky substrates is chiefly controlled by basin structure and lake level history.
95

Investigation of Stress Changes at Mount St. Helens, Washington, and Receiver Functions at the Katmai Volcanic Group, Alaska, with an Additional Section on the Assessment of Spreadsheet-based Modules.

Lehto, Heather L. 01 January 2012 (has links)
Forecasting eruptions using volcano seismology is a subject that affects the lives and property of millions of people around the world. However, there is still much to learn about the inner workings of volcanoes and how this relates to the chance of eruption. This dissertation attempts to increase the breadth of knowledge aimed at helping to understand when a volcano is likely to erupt and how large that eruption might be. Chapters 2 and 3 focus on a technique that uses changes in the local stress field beneath a volcano to determine the source of these changes and help forecast eruptions, while Chapter 4 focuses on a technique that shows great potential to be used to image magma chambers beneath volcanoes by using receiver functions. In Chapters 2 and 3 the source mechanisms of shallow volcano-tectonic earthquakes recorded at Mount St. Helens are investigated by calculating hypocenter locations and fault plane solutions (FPS) for shallow earthquakes recorded during two eruptive periods (1981-1986 and 2004-2008) and two non-eruptive periods (1987-2004 and 2008-2011). FPS show a mixture of normal, reverse, and strike-slip faulting during all periods, with a sharp increase in strike-slip faulting observed in 1987-1997 and an increase in normal faulting between 1998 and 2004 and again on September 25-29, 2004. FPS P-axis orientations (a proxy for ó1) show a ~90° rotation with respect to regional ó1 (N23°E) during 1981-1986 and 2004-2008, bimodal orientations (~N-S and ~E-W) during 1987-2004, and bimodal orientations at ~N-E and ~S-W from 2008-2011. These orientations are believed to be due to pressurization accompanying the shallow intrusion and subsequent eruption of magma as domes during 1981-1986 and 2004-2008, and the buildup of pore pressure beneath a shallow seismogenic volume during 1987-2004 and 2008-2011. Chapter 4 presents a study using receiver functions, which show the relative response of the Earth beneath a seismometer. Receiver functions are produced by deconvolving the vertical component of a seismogram from the horizontal components. The structure of the ground beneath the seismometer can then be inferred from the arrivals of P-to-S converted phases. Receiver functions were computed for the Katmai Volcanic Group, Alaska, at two seismic stations (KABU and KAKN) between January 2005 and July 2011. Receiver functions from station KABU clearly showed the arrival of the direct P-wave and the arrival from the Moho; however, receiver functions from station KAKN did not show the arrival from the Moho. In addition, changes in the amplitude and polarity of arrivals on receiver functions suggested that the structure beneath both KABU and KAKN was complex. Station KABU is likely underlain by dipping layers and/or anisotropy, while station KAKN may lie over a basin structure, an attenuating body, or some other highly complex structure. However, it is impossible to say for certain what the structure is under either station as the azimuthal coverage is poor and thus the structure is unable to be modeled. This dissertation also includes a section (Chapter 6) on the assessment of spreadsheet-based modules used in two Introductory Physical Geology courses at the University of South Florida (USF). When faculty at USF began using spreadsheet-based modules to help teach students math and geology concepts the students complained that they spent more time learning how to use Excel than they did learning the concepts presented in the modules. To determine whether the sharp learning curve for Excel was hindering learning we divided the students in two Introductory Physical Geology courses into two groups: one group was given a set of modules which instructed them to use Excel for all calculations; the other group was simply told to complete the calculations but was not instructed what method to use. The results of the study show that whether or not the students used Excel had very little to do with the level of learning they achieved. Despite complaints that Excel was hindering their learning, students in the study attained high gains for both the math and geology concepts presented in the modules whether they used Excel or not.
96

POTENTIAL FIELD MODELING ACROSS THE NEODYMIUM LINE DEFINING THE PALEOPROTEROZOIC-MESOPROTEROZOIC BOUNDARY OF THE SOUTHEASTERN MARGIN OF LAURENTIA

Durham, Rachel Lauren 01 January 2017 (has links)
A zone of high magnetization along the SE margin of Paleoproterozoic Laurentia in the United States is indicated by magnetic anomaly data. The SE edge corresponds to the geochemical Neodymium mantle derivation model age (TDM) boundary and the entire anomaly overlies the Paleoproterozoic Mazatzal Province. Two-dimensional gravity and magnetic models across the Nd boundary are created with Moho constrained from receiver functions with gravity, sedimentary thickness and the base of the crustal magnetization. Upper crustal magnetization does not show strong variation across this boundary and much of the strong magnetization appears to lie in the middle crust. Using magnetic modeling of several potential geologic scenarios, we estimate magnetization, depth extent, and width of this zone of high magnetization. The anomaly has variable width (~ 300 km) with amplitude of approximately 200 nT. Pre-1.55Ga Paleoproterozoic mid crustal blocks have significantly higher average effective susceptibility (0.06 SI) than those of the post-1.55Ga Mesoproterozoic (0.01 SI). In two of the three profiles, the Paleoproterozoic zone of high magnetization has the highest average susceptibility indicating the Mazatzal province is innately highly magnetic. The zone may have formed either by magmatism associated with westward subduction or from highly magnetic terranes wedging between accreting island arcs.
97

Applications of Satellite Geodesy in Environmental and Climate Change

Yang, Qian 31 May 2016 (has links)
Satellite geodesy plays an important role in earth observation. This dissertation presents three applications of satellite geodesy in environmental and climate change. Three satellite geodesy techniques are used: high-precision Global Positioning System (GPS), the Gravity Recovery and Climate Experiment (GRACE) and Interferometric Synthetic Aperture Radar (InSAR). In the first study, I use coastal uplift observed by GPS to study the annual changes in mass loss of the Greenland ice sheet. The data show both spatial and temporal variations of coastal ice mass loss and suggest that a combination of warm atmospheric and oceanic condition drove these variations. In the second study, I use GRACE monthly gravity change estimates to constrain recent freshwater flux from Greenland. The data show that Arctic freshwater flux started to increase rapidly in the mid-late 1990s, coincident with a decrease in the formation of dense Labrador Sea Water, a key component of the deep southward return flow od the Atlantic Meridional Overturning Circulation (AMOC). Recent freshening of the polar oceans may be reducing formation of Labrador Sea Water and hence may be weakening the AMOC. In the third study, I use InSAR to monitor ground deformation caused by CO2 injection at an enhanced oil recovery site in west Texas. Carbon capture and storage can reduce CO2 emitted from power plants, and is a promising way to mitigate anthropogenic warming. From 2007 to 2011, ~24 million tons of CO2 were sequestered in this field, causing up to 10 MPa pressure buildup in a reservoir at depth, and surface uplift up to 10 cm. This study suggests that surface displacement observed by InSAR is a cost-effective way to estimate reservoir pressure change and monitor the fate of injected fluids at waste disposal and CO2 injection sites.
98

Analyzing Tidal Fluctuations in the Big Pine Key Freshwater Lens with Time-Lapse Resistivity

Tucker, Nicole M. 20 May 2013 (has links)
The tidal influence on the Big Pine Key saltwater/freshwater interface was analyzed using time-lapse electrical resistivity imaging and shallow well measurements. The transition zone at the saltwater/freshwater interface was measured over part of a tidal cycle along three profiles. The resistivity was converted to salinity by deriving a formation factor for the Miami Oolite. A SEAWAT model was created to attempt to recreate the field measurements and test previously established hydrogeologic parameters. The results imply that the tide only affects the groundwater within 20 to 30 m of the coast. The effect is small and caused by flooding from the high tide. The low relief of the island means this effect is very sensitive to small changes in the magnitude. The SEAWAT model proved to be insufficient in modeling this effect. The study suggests that the extent of flooding is the largest influence on the salinity of the groundwater.
99

Development and application of some quantitative stratigraphic techniques to the Coos Bay coalfield, a Tertiary fluvio-deltaic complex in southwestern Oregon

Titus, Willard Sidney, III 01 January 1987 (has links)
A computer technique for interpreting geophysical logs of drill-holes in quantitative lithologic terms has been developed and tested on the deposits of the late Eocene Coaledo Formation, a well-studied fluvio-deltaic complex in southwestern Oregon. The technique involves the use of induced and natural gamma logs for separation of coal and claystone from coarse-grained detrital rocks and the use of the ratio of resistivity and natural gamma responses (defined here as the "grain size index") to divide the coarse elastic rocks into a series of textural classes corresponding to the Wentworth-Odden particle size scale.
100

Geologic Map of Tennessee (East Sheet) - 1966

Tennessee Department of Conservation 01 January 1966 (has links)
Geologic map of Tennessee published in 1966 by the Tennessee Department of Conservation, Division of Geology. William D. Hardeman supervised and directed this geologic mapping and the compilation, preparation, and editing of this map. The source material for the map includes all recent (as of 1966) detailed published geologic maps and much recent unpublished geologic mapping that was begun and completed by the Division of Geology for the specific purpose of making this map of uniform accuracy through the state. The scale is 1:250,000 with the lower half including a detailed explanation including symbols/colors for rock types, mountain formations, and other geologic features. The sources of geologic information is also included. Physical copy resides in the Government Information, Law and Maps Department of East Tennessee State University’s Sherrod Library. / https://dc.etsu.edu/rare-maps/1016/thumbnail.jpg

Page generated in 0.0816 seconds