• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrating carbon capture and storage with energy production from saline aquifers

Ganjdanesh, Reza 24 June 2014 (has links)
Technologies considered for separating CO₂ from flue gas and injecting CO₂ into saline aquifers are energy intensive, costly, and technically challenging. Production of dissolved natural gas and geothermal energy by extraction of aquifer brine has shown the potential of offsetting the cost of CO₂ capture and storage along with other technical and environmental advantages. The key is to recognize inherent value in the energy content of brine in many parts of the world. Dissolved methane in brine and geothermal energy are two of the sources of energy of many aquifers. For example, geopressured-geothermal aquifers of the US Gulf Coast contain sheer volume of hot brine and dissolved methane. For the same reason, the capacity of these geopressured-geothermal aquifers for storage of CO₂ is remarkable. In this study, various reservoir models were developed from data of Texas and Louisiana Gulf Coast saline aquifers. A systematic study was performed to determine the range of uncertainty of the properties and the prospective of energy production from saline aquifers. Two CO₂ injection strategies were proposed for storage of CO₂ based on the results of simulation studies. Injection of CO₂-saturated brine showed several advantages compared to injection of supercritical CO₂. An overall energy analysis was performed on the closed-loop cycles of capture from power plants, storage of CO₂, and production of energy. The level of cost offset of CCS technology by producing energy from target aquifers strongly depends on the applications of the produced energy. The temperature of the produced brine from geopressured-geothermal aquifers is higher than the temperature of amine stripper column. Calculations for the strategy of injecting CO₂-saturated brine show that the amount of extracted thermal energy from geopressured-geothermal aquifers exceeds the amount of heat required for capturing CO₂ by amine scrubbing. In the process of injecting dissolved CO₂, compressors and pumps should run to pressurize the CO₂ and brine to be transported and achieve the required wellhead pressure. The preliminary estimations indicate that the produced methane provides more energy than that required for pressurization. In the regions where the temperature gradient is normal, the temperature of the produced brine may not be high enough for using in the chemical absorption processes. Separation mechanisms driven by pressure difference are the alternatives for chemical absorption processes since the produced methane can be burned for running the compressors and pumps. Membrane process seems to be the leading technology candidate. The preliminary estimations show that the produced power by extracted methane and geothermal energy exceeds the power needed for membranes, compressors, and pumps. Neither storage of greenhouse gases in saline aquifers nor production of methane and/or geothermal energy from these aquifers are profitable. However, designing a closed looped system by combining methods of capture, storage and production may pay off the whole process at least from the energy point of view. / text
2

Co-optimization of CO₂ sequestration and enhanced oil recovery and co-optimization of CO₂ sequestration and methane recovery in geopressured aquifers

Bender, Serdar 05 October 2011 (has links)
In this study, the co-optimization of carbon dioxide sequestration and enhanced oil recovery and the co-optimization of carbon dioxide sequestration and methane recovery studies were discussed. Carbon dioxide emissions in the atmosphere are one of the reasons of global warming and can be decreased by capturing and storing carbon dioxide. Our aim in this study is to maximize the amount of carbon dioxide sequestered to decrease carbon dioxide emissions in the atmosphere and maximize the oil or methane recovery to increase profit or to make a project profitable. Experimental design and response surface methodology are used to co-optimize the carbon dioxide sequestration and enhanced oil recovery and carbon dioxide sequestration and methane recovery. At the end of this study, under which circumstances these projects are profitable and under which circumstances carbon dioxide sequestration can be maximized, are given. / text
3

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field

Aniekwena, Anthony Udegbunam 15 November 2004 (has links)
The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has provided useful information about the behavior and characteristics of a typical unconsolidated, overpressured, fine-grained, turbidite reservoir, which constitutes the majority of the reservoirs present in the Outer Continental Shelf of the Gulf of Mexico. Reservoirs in the Green Canyon 18 (GC 18) field constitute part of a turbidite package with reservoir quality typically increasing with depth. Characterization of the relatively shallow 8 reservoir had hitherto been hindered by the difficulty in resolving its complex architecture and stratigraphy. Furthermore, the combination of its unconsolidated rock matrix and abnormal pore pressure has resulted in severe production-induced compaction. The reservoir's complex geology had previously obfuscated the delineation of its hydrocarbon accumulation and determination of its different resource volumes. Geological and architectural alterations caused by post-accumulation salt tectonic activities had previously undermined the determination of the reservoir's active drive mechanisms and their chronology. Seismic interpretation has provided the reservoir geometry and topography. The reservoir stratigraphy has been defined using log, core and seismic data. With well data as pilot points, the spatial distribution of the reservoir properties has been defined using geostatistics. The resulting geological model was used to construct a dynamic flow model that matched historical production and pressure data.. The reservoir's pressure and production behavior indicates a dominant compaction drive mechanism. The results of this work show that the reservoir performance is influenced not only by the available drive energy, but also by the spatial distribution of the different facies relative to well locations. The study has delineated the hydrocarbon bearing reservoir, quantified the different resource categories as STOIIP/GIIP = 19.8/26.2 mmstb/Bscf, ultimate recovery = 9.92/16.01 mmstb/Bscf, and reserves (as of 9/2001) = 1.74/5.99 mmstb/Bscf of oil and gas, respectively. There does not appear to be significant benefit to infill drilling or enhanced recovery operations.

Page generated in 0.0326 seconds