Spelling suggestions: "subject:"finegrained"" "subject:"finergrained""
1 |
Header Parsing Logic in Network Switches Using Fine and Coarse-Grained Dynamic Reconfiguration StrategiesSonek, Alexander 29 April 2014 (has links)
Current ASIC only designs which interface with a general purpose processor are fairly restricted as far as their ability to be upgraded after fabrication. The primary intent of the research
documented in this thesis is to determine if the inclusion of FPGAs in existing ASIC designs can be considered as an option for alleviating this constraint by analyzing the performance of
such a framework as a replacement for the parsing logic in a typical network switch.
This thesis also covers an ancilliary goal of the research which is to compare the various methods used to reconfigure modern FPGAs, including the use of self initiated dynamic partial
reconfiguration, in regards to the degree in which they interrupt the operation of the device in which an FPGA is embedded. This portion of the research is also conducted in the context of a
network switch and focuses on the ability of the network switch to reconfigure itself dynamically when presented with a new type of network traffic.
|
2 |
Genesis of an Archaean Quartz-Feldspar PorphyryCooper, Ian S. January 1985 (has links)
<p> Three conformable units of fine-grained quartz-feldspar porphyry were mapped in the Berry River Formation, Warclub Group, Northwestern Ontario. The largest unit (Unit 1) is compared geochemically and petrographically to quartz-feldspar porphyry intrusions and tuffs in the area with the aim of determining the method of emplacement of the porphyry unit (Unit 1), and consequently the other two units.</p> / Thesis / Bachelor of Science (BSc)
|
3 |
Privacy-Preserving Personal Health Record System Using Attribute-Based EncryptionZHENG, YAO 03 July 2011 (has links)
"Personal health record (PHR) service is an emerging model for health information exchange. It allows patients to create, manage, control and share their health information with other users as well as healthcare providers. In reality, a PHR service is likely to be hosted by third-party cloud service providers in order to enhance its interoperability. However, there have been serious privacy concerns about outsourcing PHR data to cloud servers, not only because cloud providers are generally not covered entities under HIPAA, but also due to an increasing number of cloud data breach incidents happened in recent years. In this thesis, we propose a privacy-preserving PHR system using attribute-based encryption (ABE). In this system, patients can encrypt their PHRs and store them on semi-trusted cloud servers such that servers do not have access to sensitive PHR contexts. Meanwhile patients maintain full control over access to their PHR files, by assigning fine-grained, attribute-based access privileges to selected data users, while different users can have access to different parts of their PHR. Our system also provides extra features such as populating PHR from professional electronic health record (EHR) using ABE. In order to evaluate our proposal, we create a Linux library that implement primitive of key-policy attribute-based encryption (KP-ABE) algorithms. We also build a PHR application based on Indivo PCHR system that allow doctors to encrypt and submit their prescription and diagnostic note to PHR servers using KP-ABE. We evaluate the performance efficiency of different ABE schemes as well as the data query time of Indivo PCHR system when PHR data are encrypted under ABE scheme."
|
4 |
On Fine-Grained Access Control for XMLZhuo, Donghui January 2003 (has links)
Fine-grained access control for XML is about controlling access to XML documents at the granularity of individual elements or attributes. This thesis addresses two problems related to XML access controls. The first is efficient, secure evaluation of XPath expressions. We present a technique that secures path expressions by means of query modification, and we show that the query modification algorithm is correct under a language-independent semantics for secure query evaluation. The second problem is to provide a compact, yet useful, representation of the access matrix. Since determining a user's privilege directly from access control policies can be extremely inefficient, materializing the access matrix---the net effect of the access control policies---is a common approach to speed up the authorization decision making. The fine-grained nature of XML access controls, however, makes the space cost of matrix materialization a significant issue. We present a codebook-based technique that records access matrices compactly. Our experimental study shows that the codebook approach exhibits significant space savings over other storage schemes, such as the access control list and the compressed accessibility map. The solutions to the above two problems provide a foundation for the development of an efficient mechanism that enforces fine-grained access controls for XML databases in the cases of query access.
|
5 |
On Fine-Grained Access Control for XMLZhuo, Donghui January 2003 (has links)
Fine-grained access control for XML is about controlling access to XML documents at the granularity of individual elements or attributes. This thesis addresses two problems related to XML access controls. The first is efficient, secure evaluation of XPath expressions. We present a technique that secures path expressions by means of query modification, and we show that the query modification algorithm is correct under a language-independent semantics for secure query evaluation. The second problem is to provide a compact, yet useful, representation of the access matrix. Since determining a user's privilege directly from access control policies can be extremely inefficient, materializing the access matrix---the net effect of the access control policies---is a common approach to speed up the authorization decision making. The fine-grained nature of XML access controls, however, makes the space cost of matrix materialization a significant issue. We present a codebook-based technique that records access matrices compactly. Our experimental study shows that the codebook approach exhibits significant space savings over other storage schemes, such as the access control list and the compressed accessibility map. The solutions to the above two problems provide a foundation for the development of an efficient mechanism that enforces fine-grained access controls for XML databases in the cases of query access.
|
6 |
Mikrostruktura a mechanické vlastnosti ultrajemnozrnných slitin titanu / Microstructure and mechanical properties of ultra-fine grained titanium alloysVáclavová, Kristína January 2015 (has links)
Title: Microstructure and mechanical properties of ultra-fine grained titanium alloys Author: Bc. Kristína Václavová Department / Institute: Department of Physics of Materials Supervisor of the master thesis: PhDr. RNDr. Josef Stráský, Ph.D. Abstract: Metastable β-Ti alloys Ti-15Mo and Ti-6.8Mo-4.5Fe-1.5Al (TIMETAL LCB) were subjected to severe plastic deformation by high pressure torsion. Microhardness of Ti-15Mo and TIMETAL LCB alloys increases with increasing inserted deformation, i.e. with increasing number of HPT rotations and also with increasing distance from the centre of the sample. The highest microhardness after HPT exceeds significantly the microhardness of two- phase α + β heat-treated material. Increasingly deformed microstructure was also demonstrated by scanning electron microscopy and by electron back-scatter diffraction. Significant twinning was observed in both studied alloys. Mechanism of multiple twinning contributes notably to the fragmentation of grains and thus to the refinement of the microstructure. Defect structure in Ti-15Mo alloy was studied by positron annihilation spectroscopy. It was proved that dislocations are the only detectable defects in the material by positron annihilation spectroscopy and that dislocation density increases with the number of HPT revolution and with...
|
7 |
EFFECTS OF PLASTICITY ON LIQUEFACTION CHARACTERISTICS OF FINE-GRAINED SOILSUprety, Sandip 01 May 2016 (has links)
Earthquakes are natural calamities that occur as a result of sudden release of strain energy stored in fault planes. Earthquakes have been observed to cause huge damage to infrastructures and lives. Earthquakes result in development of fissures, abnormal or unequal movement of foundations, and loss of strength and stiffness of the soils. Liquefaction is attributed as a major cause for the loss of strength and stiffness of soil during earthquakes. In the past, liquefaction was attributed only to coarse-grained to medium-grained sand and was extensively studied but the fine-grained soils were generally considered as non-liquefiable. However, from observations during recent earthquakes, fine-grained soils having low plasticity (plasticity index (PI) <20) have experienced ground failures due to liquefaction or large deformations. Moreover, laboratory experiments show that not only saturated cohesionless soils but also fine-grained soils may liquefy if certain criteria are met. One of the parameters which influences the liquefaction characteristics of fine-grained soils is its plasticity. This study may become helpful in understanding the effect of plasticity on liquefaction resistance of fine-grained soils. The objective of this study were to investigate the (1) effect of plasticity on pore pressure built up and deformation characteristics of fine-grained soils, and (2) effects of cyclic shear stress on liquefaction resistance of fine-grained soils. A total of 24 tests were conducted using a stress controlled cyclic triaxial testing machine on identically prepared specimens at an initial effective confining pressure of 5.0psi. The plasticity index (PI) was varied from non-plastic (NP) to 14.53. Sil-Co-Sil #40, a non-plastic commercial silt (product of US Silica Company) and EPK Kaolin clay (product of Edgar Minerals Inc.) were used as base materials. These materials were mixed in different proportions to obtain desired plasticity index. Out of the twenty-four tests, eleven tests were conducted on clean silt samples. Among the tests on clean silt samples, four tests were conducted on specimens having a post consolidation void ratio of 0.74 to 0.76. Further, six tests were conducted on specimens having a post consolidation void ratio of 0.74 to 1.04 by using a cyclic stress ratio (CSR) of 0.2 and 0.25. Seventeen tests were grouped to study the influence of plasticity on liquefaction characteristics of fine-grained soil. The PI of specimens tested ranged from non-plastic (NP) to 14.53. Each of the specimens with a definite PI was tested at an initial confining pressure of 5.0 psi using a CSR of 0.2, 0.3, and 0.4. The results obtained from the tests were used to compare the effects of plasticity on liquefaction characteristics of fine-grained soils. Based on the limited tests conducted, it was observed that plasticity index had distinct influence on the cyclic strength of the samples. It was found that CSR required to cause a pre-determined strain in a given number of loading cycles reduces as the plasticity index increases from non-plastic (NP) to 3.46, but increases for soils having PI greater than 3.46. Moreover, the liquefaction resistance decreases with the increase in cyclic shear stress for all soils regardless of plasticity indices (PIs). The critical PI value corresponds to 15% of EPK clay content in the specimen which gives a PI of 3.46.
|
8 |
Temperature effects on fine-grained soil erodibilityAl-Ali, Abdullah Mubarak Abdulmohsen January 1900 (has links)
Master of Science / Civil Engineering / Stacey Tucker / Recent climate changes may affect the stability of our infrastructure in many ways. This study investigated the effects of fine-grained soil temperature on erosion rate. If climate change is shown to affect the erodibility of soils the impacts must be identified to monitor the stability of existing infrastructure, improve design of levees and structures founded in erosive environments, and to prevent sediment loss and stream meanders. Fine-grained soil erosion is complicated by the dynamic linkage of multiple parameters, including physical, biological and geochemical properties. This study held constant all parameters that influence fine-grained soil erodibility while only varying soil temperature in order to study the effects it has on erodibility. This study also confirmed previous findings that water temperature affects soil erodibility. The main objective of this study was to investigate the effects of fine-grained soil temperature on erosion rate. This study also instrumented a turbidity sensor to reliably map soil erosion. Based on this research, the conclusion was made that an increase in soil temperature increases soil erosion rate. The turbidity sensor was a valuable tool for comparing soil erosion. Future studies should investigate the effects soil temperatures below room temperature, the magnitude of temperature increase or decrease, and the effects of cyclic heating and cooling on fine grained soil erodibility.
|
9 |
Laboratory Evaluation of Specialty Portland Cements and Polymer Fibers in Stabilization of Fine Grained SoilsCarruth, William Denman 30 April 2011 (has links)
After a major flooding disaster, construction materials will be scarce during early recovery stages and any material of reasonable quality would be useful. Instead of importing higher quality material from sites a considerable distance away, on-site material may be useable. This thesis explores usage of specialty portland cements, and in some cases polymer fibers, as stabilization additives to fine grained soils with elevated moisture contents. The primary objective of this thesis is to develop strength, modulus, and ductility trends for a variety of soil types, cementitious materials, cementitious material contents, and moisture contents, and to use the data to compare specialty grind portland cements to commercially available portland cement from the same production facility. The secondary objective is to evaluate the effect of polymer fibers combined with portland cement for the same mixtures. Over 1300 Unconfined Compression (UC) tests were conducted to complete these two objectives.
|
10 |
Gas-charged sediments: Phenomena and characterizationJang, Junbong 07 January 2016 (has links)
The mass of carbon trapped in methane hydrates exceeds that in conventional fossil fuel reservoirs. While methane in coarse-grained hydrate-bearing sediments is technically recoverable, most methane hydrates are found in fine-grained marine sediments where gas recovery is inherently impeded by very low gas permeability. Using experimental methods and analyses, this thesis advances the understanding of fine-grained sediments in view of gas production from methane hydrates. The research scope includes: a new approach for the classification of fines in terms of electrical sensitivity, the estimation of the sediment volume contraction during hydrate dissociation, a pore-scale study of gas migration in sediments and the self-regulation effect of surfactants, the formation of preferential gas migration pathways at interfaces during gas production, pressure core technology for the characterization of hydrate bearing sediments without causing hydrate dissociation, and the deployment of a bio-sub-sampling chamber in Japan.
|
Page generated in 0.0481 seconds