• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 73
  • 22
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 262
  • 124
  • 86
  • 64
  • 36
  • 36
  • 33
  • 24
  • 22
  • 20
  • 20
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Self-Burrowing Mechanism and Robot Inspired by Razor Clams

January 2020 (has links)
abstract: The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the perspective of soil mechanics. In this study, the razor clam was observed to burrow out of sands simply by extending and contracting its foot periodically. This upward burrowing gait is much simpler than its downward burrowing gait, which also involves opening/closing of the shell and dilation of the foot. The upward burrowing gait inspired the design of a self-burrowing-out soft robot, which drives itself out of sands naturally by extension and contraction through pneumatic inflation and deflation. A simplified analytical model was then proposed and explained the upward burrowing behavior of the robot and razor clams as the asymmetric nature of soil resistances applied on both ends due to the intrinsic stress gradient of sand deposits. To burrow downward, additional symmetry-breaking features are needed for the robot to increase the resistance in the upward burrowing direction and to decrease the resistance in the downward burrowing direction. A potential approach is by incorporating friction anisotropy, which was then experimentally demonstrated to affect the upward burrowing of the soft robot. The downward burrowing gait of razor clams provides another inspiration. By exploring the analogies between the downward burrowing gait and in-situ soil characterization methods, a clam-inspired shape-changing penetrator was designed and penetrated dry granular materials both numerically and experimentally. Results demonstrated that the shell opening not only contributes to forming a penetration anchor by compressing the surrounding particles, but also reduces the foot penetration resistance temporally by creating a stress arch above the foot; the shell closing facilitates the downward burrowing by reducing the friction resistance to the subsequent shell retraction. Findings from this research shed lights on the future design of a clam-inspired self-burrowing robot. / Dissertation/Thesis / Video for section A1 of APPENDIX A / Video for section A2 of APPENDIX A / Video for section A3 of APPENDIX A / Video for section B8 of APPENDIX B / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
172

Comprehensive Evaluation of Permanent Deformation Behavior for Asphalt Mixtures under High Stresses

Saqer, Hamzeh 23 September 2019 (has links)
No description available.
173

Pullout and Tensile Behavior of Crimped Steel Reinforcement for Mechanically Stabilized Earth (MSE) Walls

Suncar, Oscar Ernesto 01 May 2010 (has links)
Many research studies made on hundreds of MSE walls have shown that in order to get lower values of lateral earth pressure coefficients from an active condition on the backfill soil, thus lower exerted loads and stresses on the reinforcement, the wall needs to yield. This is typical of extensible polymer-based wall systems, such as geosynthetics. Steel systems, on the other hand, are very rigid and do not allow enough deformation on the wall to generate the active condition. For this research, steel reinforcement for MSE walls that behaves similar to geosynthetics was developed. This was done by using crimps on steel bars that would allow the wall to deform as the crimps straighten. A pullout box was designed and constructed, where tensile and pullout tests were performed on the crimped reinforcement. Different crimp geometries on different bar diameters were tested under a range of confining pressures. From this, force-displacement curves were developed for these crimp geometries that could be used to predict deflections on walls with crimped reinforcement. In addition, the pullout resistance of the crimps in the straighten process was evaluated. This way, the crimps would not only be used to allow the wall to yield, but also as a pullout resistance mechanism. The pullout resistances per crimp for different tensions on the crimp and under a range of overburden pressures were evaluated. By combining the pullout resistance of the crimps and the force-displacement curves, a new internal stability design method was introduced where crimped reinforcement is used to resist both pullout and rupture failure. Also presented here are the pullout resistances of round bars with improved deformations of different diameters. These were found to have the same pullout resistance of square deformed bars with the same cross-sectional area. Round bars are preferred over square bars because they are more corrosion resistant and have longer design life.
174

A Novel Lagrangian Gradient Smoothing Method for Fluids and Flowing Solids

Mao, Zirui 11 June 2019 (has links)
No description available.
175

Exploring a Discrete Element Approach for Chemically Mediated Deformation at Granular Contact in Calcite Minerals

Mahat, Santosh 28 August 2019 (has links)
No description available.
176

Remediation Methods for Subgrade Settlements of Existing Roadways: Lifetime Cost-Benefit Analysis

Arens, Kevin C. January 2019 (has links)
No description available.
177

Re-Rounding of Deflected Thermoplastic Pipes

White, Kevin E. January 2020 (has links)
No description available.
178

Modeling the Neutral Atmosphere in Continuously Operating GNSS Networks using OPUS-Projects

Ugur, Mehmet Ali 22 May 2013 (has links)
No description available.
179

Satellite Mapping of Past Biosolids (Sewage Sludge) and Animal Manure Application to Agriculture Fields in Wood County, Ohio

Wang, Jingjing 30 July 2009 (has links)
No description available.
180

Mathematical Analysis of a Geothermal System

Erceg, Ivan P. 04 November 2008 (has links)
No description available.

Page generated in 0.0446 seconds