• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 73
  • 22
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 262
  • 124
  • 86
  • 64
  • 36
  • 36
  • 33
  • 24
  • 22
  • 20
  • 20
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Design and Analysis of "High Vacuum Densification Method" for Saturated and Partially Saturated Soft Soil Improvement

Tabatabaei, SeyedAli 15 May 2014 (has links)
No description available.
182

Modeling Hydro-Bio-Chemo-Mechanical Mechanisms in Granular Soils

Bista, Hemanta 23 December 2014 (has links)
No description available.
183

Service Life of Concrete and Metal Culverts Located in Ohio Department of Transportation Districts 9 and 10

Colorado Urrea, Gabriel J. January 2014 (has links)
No description available.
184

Critical Vertical Deflection of Buried HDPE Pipes

Han, Xiao 15 June 2017 (has links)
No description available.
185

An Open Geospatial Consortium Standards-based Arctic Climatology Sensor Network Prototype

Rettig, Andrew J. 06 December 2010 (has links)
No description available.
186

Evaluation of Asphalt Mixtures Incorporating Terminal Blend GTR (Ground Tire Rubber) Binders

Iqbal, Md Tanvir, 19 September 2016 (has links)
No description available.
187

Evolution of ORV Trails in the Little Sahara Recreation Area, Utah, 1952 - 1997

Dunfee, Scott E. 29 December 2008 (has links)
No description available.
188

Potential Utilization of FGD Gypsum for Reclamation of Abandoned Highwalls

Modi, Deepa 22 October 2010 (has links)
No description available.
189

Finite element dynamic analysis of nonlinear porous media with applications to piles in saturated clays.

Wathugala, Gamage Wijesena. January 1990 (has links)
A basis for developing a general approach to solve geotechnical engineering problems through dynamic finite element analysis of nonlinear porous media is presented. A new series of constitutive models named here as δ* series are developed under the general hierarchical single surface (HISS) modeling approach, to include the behavior of, saturated normally consolidated and overconsolidated clay, under drained or undrained, static and cyclic loading conditions. Algorithms for determination of material parameters for these models from laboratory models are also developed. Constitutive parameters for Sabine Clay are obtained using triaxial test results from undisturbed samples and the model is verified by back predicting the laboratory behavior of this clay. Sensitivity analyses for all the material parameters have been also carried out. Efficient and reliable algorithms for calculating strain increments for given stress increments and vice versa are developed. All the models in the δ* series are implemented in the finite element program POROUS which is based on the theory of dynamics of nonlinear porous media. Here a modular approach is used to facilitate easy modification of all the functions associated with these models (yield function, potential function, hardening function and interpolation functions). Complete test procedure for field load tests on two pile segments (3 inch and 1.72 inch) are numerically simulated and compared with field measurements. Initial stresses before pile driving are estimated using results of s self boring pressuremeter test on the site. Strain distributions just after pile driving are evaluated using the strain path method. The effective stress distribution is obtained by integrating constitutive equations for given strain paths. Corresponding total stresses and pore pressure distributions are obtained using the computer program POROUS. Consolidation after pile driving and all the static and cyclic tests followed are also simulated using the program POROUS. The predicted normalized pore pressure dissipation curve matches the field behavior. This analysis provides good predictions of shear transfer from which the pile capacity can be evaluated. Even though the variation of pore pressure during a cycle is not matched exactly, the accumulation of pore pressures are predicted well. The demonstrated ability of dynamic finite element analysis of nonlinear porous media, to simulate slow consolidation and cyclic load tests provides a basis for developing a general approach for solving geotechnical engineering problems.
190

Bond strength of cementitious borehole plugs in welded tuff.

Akgun, Haluk, 1959- January 1990 (has links)
This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. Push-out tests are used to determine the bond strength by applying an axial load to the cement plugs. A total of 130 push-out tests are performed as a function of borehole size, plug length, temperature, and degree of saturation of the tuff cylinder. The use of four different borehole radii enables evaluation of size effects. A well-defined exponential strength decrease with increasing plug diameter results.

Page generated in 0.0602 seconds