• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 15
  • 2
  • 1
  • Tagged with
  • 61
  • 61
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Avaliação do potencial geotérmico da bacia sedimentar de Taubaté / Evaluation of Taubate basin geothermal

Souza Filho, Mário Nascimento, 1943- 20 August 2018 (has links)
Orientador: Sueli Yoshinaga Pereira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências / Made available in DSpace on 2018-08-20T15:45:24Z (GMT). No. of bitstreams: 1 SouzaFilho_MarioNascimento_M.pdf: 8976577 bytes, checksum: 06f17de0e0e20fb1daea5a785d88c120 (MD5) Previous issue date: 2012 / Resumo: Os recursos conhecidos de energia geotermal no Brasil são de baixa entalpia, com fontes contendo fluidos com valores de temperatura inferiores a 100ºC. Isto por si só desencoraja a tentativa de buscar cenários possíveis de aproveitamento das fontes, restritas até então, aos usos através de balneários, com o aproveitamento dos poços mais profundos perfurados inicialmente para petróleo, principalmente na Bacia do Paraná. Estudos recentes foram desenvolvidos em diversos países com vistas ao aproveitamento geotermal de bacias sedimentares, semelhantes às nossas, buscando recursos geotermais, abaixo do topo do embasamento, nos denominados HDR (Hot Dry Rock), através de injeção de fluidos que irão circular no meio rochoso fraturado (artificialmente ou não), aquecer e retornar à superfície em forma de vapor, para então serem aproveitados. Este cenário foi avaliado e estudado para um eventual aproveitamento na Bacia de Taubaté. Uma pesquisa bibliográfica foi feita focada no tema em estudo e não pretendeu esgotar o assunto, mas sim servir de ponto de partida para realizá-los. Foram tratados os perfis geofísicos de 39 poços selecionados no vale do Paraíba do Sul, entre Jacareí e Cachoeira Paulista, no Estado de São Paulo, identificadas as alternâncias litológicas, medidas as temperaturas dos poços, em construção, as espessuras dos distintos litotipos e traçados mapas de isovalores do topo do embasamento cristalino e sua temperatura. A partir desse ponto calculou-se o grau geotérmico para a área e foram traçados mapas previsionais de temperatura no horizonte 1.000 metros de profundidade sobrepostos aos mapas temáticos da distribuição percentual dos litotipos encontrados na bacia, com vistas ao aproveitamento econômico dos recursos geotermais. Duas áreas no vale do Paraíba despertaram interesse e será objeto de novas prospecções com vistas à definição do Projeto de Avaliação de Energia Geotermal na Bacia de Taubaté / Abstract: The known geothermal energy resources of Brazil have a low enthalpy level, with sources showing temperature levels lower than 100º Centigrade This fact by itself had discouraged initiatives aimed to find possible scenarios for utilization of such sources, which had been employed insofar for recreational activities in water resorts by means of exploitation of deep wells drilled initially for oil and gas in Paraná Basin. Recent studies were developed several countries aiming at geothermal utilization of sedimentary basins, similar to the Brazilian ones, searching for geothermal resources named Hot Dry Rock (HDR), through injection of fluids that will circulate within rocky fault or fractured crystalline basement and return to the surface in form of vapor in order to be utilized. This scenario is being evaluated and hereto studied for potential utilization in Taubaté Basin. Bibliographic research was made focused in this subject studied and it does not aim to exhaust this subject but rather support such studies and become a starting point. Geophysical logs of 39, mainly water wells drilled in Paraíba do Sul Valley, between Jacareí and Cachoeira Paulista, were analyzed and different lithological beds were interpreted. Temperatures of wells in construction were measured, the thickness of distinguished litologies and a surface trend analysis maps were constructed. The target of this study is the evaluation of the crystalline basement top and its temperature. Throughout this point the study aims to calculate the geothermic grade for the area and evaluate the region potentiality taking into consideration the economic exploitation of the geothermal resources. Two areas in Paraíba Valley have attracted interest and will be subject to new prospections aiming the definition of the Project for Evaluation of Taubaté Basin Geothermal Energy / Mestrado / Geologia e Recursos Naturais / Mestre em Geociências
52

Geothermal history of the Karoo Basin in South Africa inferred from magnetic studies

Maré, Leonie Pauline 02 July 2015 (has links)
Ph.D (Geology) / The Karoo succession has economic significance through the exploitation of extensive coal deposits and in recent years has seen significant international interest due to potentially large shale gas resources. The thermal history of sedimentary basins affects the genesis of hydrocarbon deposits and it is therefore essential to model and reconstruct the geothermal variation across the Karoo Basin before evaluation of the hydrocarbon resources can take place. The main scientific questions related to the thermal history of the Karoo Basin are whether the emplacement of large volumes of magma was preceded by a large-scale lowgrade thermal doming as proposed for continental rift settings. Alternatively, was the Karoo thermal event restricted to the contact aureole of intrusives, as well as the question whether the intrusion of dolerite resulted in large-scale CO2 or CH4 degassing from coalbeds and carbonaceous shales based on similarities to other large igneous provinces? Magnetic techniques provide an alternative to more traditional methods to study the geothermal history of sedimentary basins (such as illite crystallinity and vitrinite reflectance), which are often associated with significant uncertainty. Three experiments using existing magnetic and palaeomagnetic methods were conducted to determine the peak temperatures reached by Karoo sedimentary rocks before and after the Karoo magmatic event. These experiments include the classic palaeomagnetic baked contact tests (magnetostratigraphy), analyses of the variation of magnetic susceptibility during repeated progressive heating (alteration index method) as well the variation of relative concentrations of fine grained pyrrhotite and magnetite in sedimentary strata relative to their distance from an intrusive (pyrrhotite/magnetite geothermometer). Additionally various magnetic fabric analyses were performed including a study of the variation in anisotropy of magnetic susceptibility (AMS). Although these techniques were successful in delineating the extent of the contact aureoles, only the alternating index (A40) had the ability to give estimated peak temperatures. Results indicate a general elevation of palaeotemperatures of the organic-rich sedimentary rocks of the Ecca Group to temperatures where hydrocarbons are normally converted into gas. Importantly, it is clear from this study that the greatest thermal effects of the sill intrusions on the sedimentary strata are limited to the contact aureoles, suggesting that there is an, as yet unquantified, potential for hydrocarbon resources remaining between these intrusions. A general increase in the palaeotemperatures from southwest to northeast across the basin was observed. This is mainly due to differences in thermal conductivity of the various lithologies across the basin from tight low porosity marine shales in the south and southwest towards more lacustrine mudstone and porous sandstone in the northeast.
53

Evaluation for harnessing low-enthalpy geothermal energy in South Africa based on a model pilot plant in the Limpopo Mobile Belt

Dhansay, Taufeeq January 2012 (has links)
South Africa generates more than 90 percent of its total energy capacity through non-renewable sources. With coal forming the predominant energy source, South Africa became the leading carbon emissive nation in Africa, emitting 450 million tonnes of CO2 in 2011. In an international effort to restrict global average temperature rise to 2° C above the average prior the industrial revolution, the Kyoto Protocol has been extended for another 8-year commitment period. This is complementary to an expected resolution of a new legally binding climate change policy in 2015. This policy will aim to introduce financial penalties for nations failing to meet ascribed GHG emission targets by 2020. In an attempt to meet these climate change resolutions South Africa will research and develop cleaner, alternative forms of energy, including hydro, wind, and biomass forms of renewable energy, in addition to designating stringent building regulations for the Incorporation of solar energy. These measures form part of an Integrated evelopment Plan that aims to generate a target of 10,000 GWh of renewable energy in 2013. South Africa is also investigating the possibilities of extracting its shale gas reserves and implementing it as a major energy source. This energy mix has given little attention to geothermal energy. The reasons for this omission appears to be the lack of active volcanism and previous research that suggests South Africa, largely underlain by the Kaapvaal Craton, has a relatively low heat Flow profile, deemed insufficient for harnessing geothermal energy.
54

An analysis of geothermal energy use as heat in industrial processes

Gupta, Akhil, 1959- January 1980 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1980 / Includes bibliographical references. / by Akhil Gupta. / M.S. / M.S. Massachusetts Institute of Technology, Department of Mechanical Engineering
55

Hydrogeochemical Characterization of the Alvord Valley Known Geothermal Resources Area, Harney County, Oregon

St. John, Anna Maria 10 June 1993 (has links)
The Alvord Valley Known Geothermal Resources Area (KGRA) , located east of the Steens Mountain-Pueblo Mountains fault block in southeastern Oregon, is within the northern Basin and Range province. This investigation focuses on three thermal areas in the Alvord Basin: Borax Lake and the hot springs north of Borax Lake, Alvord Hot Springs and Mickey Springs. Mickey Springs and the springs north of Borax Lake are boiling at the surface (94 and 95° C, respectively). Inflow temperatures to Borax Lake, measured at a depth of 30 m, are greater than 100° C. Surface temperatures for Alvord Hot Springs and a flowing well northeast of Borax Lake are 78 and 59° C, respectively. Thermal fluids issue from Quaternary lacustrine and alluvial deposits. While silica sinter deposits are present at all three thermal areas, sinter is not presently being deposited. Minor calcite is being deposited at the springs north of Borax Lake. The springs discharge from N to NEstriking, high-angle, basin-bounding faults along the base of Steens Mountain and Mickey Mountain and NE-striking intrabasinal faults south of Alvord Lake. The thermal waters are dilute sodium-bicarbonate waters with significant amounts of sulfate and chloride. Conservative element plots (B, F, and Li vs. Cl) indicate good correlation between Cl and the other conservative elements. These correlations could result from mixing of thermal water with a dilute cold water or fluid evolution due to increased fluid-rock interaction, evaporation, and steam loss due to boiling. The small variations in chloride concentrations of thermal fluids during the sampling period argues against mixing of thermal fluids with cold water. The geothermal system is a hot-water rather than a vapordominated system. The ỎD content of thermal fluids is similar to the ỎD content of local cold water wells, springs, basinal pore fluids at a depth of 4 to 5 m, and perennial streams. Similarities in ỎD values indicate recharge for geothermal fluids is precipitation from the Steens Mountain fault block. The Ỏ18 content of thermal fluids is shifted 2 to 3°/oo to the right of the world meteoric water line indicating fluid-rock interaction at elevated temperatures in the reservoir. Tritium contents indicate relatively long residence times and/or low-velocity circulation of meteoric water through basement rocks. Values range from 0 to 0.25 T.U. The application of two end-member models, which calculate fluid residence times, generate a minimum of 57 years and a maximum of greater than 10,000 years. Estimated reservoir temperatures based on cation and silica geothermometry are between 170 and 200°C. Oxygensulfate isotope geothermometer estimates indicate reservoir temperatures between 198 and 207' C for Borax Lake and Alvord Hot Springs. Mickey Springs and a flowing well northeast of Borax Lake yield temperature estimates of 168 and 150° C, respectively. These values indicate partial reequilibration of the isotopic system. The Ỏ13C contents of carbon dioxide and methane of gas discharges from the thermal areas are similar to geothermal fluids from other sites. The Ỏ13C of methane indicate "normal" geothermal methane for Alvord Hot Springs and Mickey Springs (-27.8 and -27.6, respectively). The Ỏ13C of CH4 for springs north of Borax Lake (-33.6) indicates a small amount of thermogenic methane may be contributed by thermal alteration of organics in basinal sediments. The Ỏ13C contents for C02 at Alvord Hot Springs and Borax Lake are within the range expected for atmospheric, fumarolic, or mantle derived C02 (-6.5 and -6.6, respectively). The Ỏ13C content of C02 from Mickey Springs is isotopically lighter than gas released from fumaroles or the mantle (-9.4). N2/Ar ratios for Mickey Springs and Borax Lake gases (39.2 and 40.8, respectively) indicate interaction with airsaturated ground water during flow through the the zone of aeration. Helium is enriched relative to Ar and N2 in gas discharges from Alvord Hot Springs, indicating longer fluid residence times and/or increased crustal interaction at high temperatures. Ratios of B/Cl indicate the fluid reservoir is hosted in volcanic rocks. The Li/Cs ratios for the Borax Lake thermal area are consistent with a reservoir located in rhyoli tic rocks. The 228Ra/226Ra content of Borax Lake thermal fluids (1.14 ± 0.13 dpm/kg) indicates interaction with volcanic rocks for Borax Lake. The 228Ra/226Ra content of thermal fluids from Alvord Hot Springs and Mickey Springs (0.38~0.02 and 0.17 ~ 0.09) are lower than those expected for volcanic rocks and may indicate local uranium accumulation in the reservoir or zones of upflow. The 87Sr / 86Sr values for thermal waters and stratigraphic uni ts indicate the fluid reservoir is located in volcanic rocks beneath Steens Basalt. Equilibration of fluids in these units argues for thermal water circulation depths of 2 to 2.5 km in the Borax Lake thermal area, greater than 3 km in the Alvord Hot Springs area and 1 to 2 km in the Mickey Springs area. Data presented in this study do not preclude a single large deep reservoir system discharging at these three thermal areas in the Alvord basin. Differences in the chemical and isotopic composition of discharge from the three thermal areas are produced during upf low from the reservoir. During upflow, thermal waters follow a complex pathway of vertical and lateral fractures which includes short residence times in shallow reservoirs before reaching the surface. Boiling, mixing with condensate, oxidation, mixing with 1-3% tritium-bearing, near-surface cold water, relative differences in flow rate and volume, and slow cooling without vigorous boiling are processes that modify fluid composition during upflow from the deep geothermal reservoir.
56

The influence of geothermal sources on deep ocean temperature, salinity, and flow fields

Speer, Kevin G. (Kevin George) January 1988 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1988. / Includes bibliographical references (p. 142-146). / This thesis is a study of the effect of geothermal sources on the deep circulation, temperature and salinity fields. In Chapter 1 background material is given on the strength and distribution of geothermal heating. In Chapter 2 evidence for the influence of a hydrothermal system in the rift valley of the Mid-Atlantic Ridge on nearby property fields and a model of the flow around such a heat source are presented, with an analysis of a larger-scale effect. Results of an analytical model for a heat source on a #-plane in Chapter 3 show how the response far from the source can have a structure different from the forcing because of its dependence on two parameters: a Peclet number (the ratio of horizontal advection and vertical diffusion), and a Froude-number-like parameter (the ratio of long wave phase speed to background flow speed) which control the relative amount of damping and advection of different vertical scales. The solutions emphasize the different behavior of a dynamical field like temperature compared to tracers introduced at the source. These ideas are useful for interpreting more complicated solutions from a numerical model presented in the final chapter. / by Kevin G. Speer. / Ph.D.
57

Mechanisms of heat transport through the floor of the equatorial Pacific Ocean

Crowe, John January 1981 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science / Vita. / Includes bibliographies. / by John Crowe. / Ph.D.
58

Condensation of hydrocarbon and zeotropic hydrocarbon/refrigerant mixtures in horizontal tubes

Milkie, Jeffrey A. 22 May 2014 (has links)
An experimental investigation of condensation of hydrocarbons and hydrocarbon/refrigerant mixtures in horizontal tubes was conducted. Heat transfer coefficients and frictional pressure drops during condensation of a zeotropic binary mixture of R245fa and n-pentane in a 7.75 mm internal diameter round tube were measured across the entire vapor-liquid dome, for mass fluxes ranging from 150 to 600 kg m-2 s-1, and reduced pressures ranging from 0.06 to 0.23. Condensation experiments were conducted for the mixture, as well as its pure constituents over a similar range of conditions. In addition, condensing flow of the hydrocarbon propane was documented visually using high-speed video recordings. Results from these experiments were used to establish the two-phase flow regimes, void fractions, and liquid film thicknesses during condensation of propane flowing through horizontal tubes with internal diameters of 7 and 15 mm. These measurements were made over mass fluxes ranging from 75 to 450 kg m-2 s-1, operating pressures ranging from 952 to 1218 kPa, and vapor qualities ranging from 0.05 to 0.95. Liquid film thickness and void fraction data were subsequently be used to assist the development of heat transfer and pressure drop models. In particular, the heat transfer coefficients and pressure drops observed in the mixture were compared with the corresponding values for the pure constituents. Models for heat transfer and pressure drop in the pure components as well as the mixtures were developed based on the data from the present study. This work extends the available literature on two-phase flow regimes for air-water mixtures, steam, and refrigerants to include hydrocarbons. Additionally, the limited information on condensation in multi-constituent hydrocarbon-hydrocarbon and refrigerant-refrigerant mixtures was extended to include hydrocarbon-refrigerant mixtures. The findings of this study are expected to benefit applications such as refrigeration, low-grade heat-driven power generation, and the development of heat exchangers for the chemical and process industries.
59

Structural and volcanic evolution of the Glass Buttes area, High Lava Plains, Oregon

Boschmann, Darrick E. 29 November 2012 (has links)
The Glass Buttes volcanic complex is a cluster of bimodal (basalt-rhyolite), Miocene to Pleistocene age lava flows and domes located in Oregon's High Lava Plains province, a broad region of Cenozoic bimodal volcanism in south-central Oregon. The High Lava Plains is deformed by northwest-striking faults of the Brothers Fault Zone, a diffuse, ~N40°W trending zone of en echelon faults cutting ~250 km obliquely across the High Lava Plains. Individual fault segments within the Brothers Fault Zone are typically <20 km long, strike ~N40°W, have apparent normal separation with 10-100 m throw. A smaller population of ~5-10 km long faults striking ~N30°E exhibits mutually crosscutting relationships with the dominant northwest striking faults. Basaltic volcanic rocks in the Glass Buttes area erupted during the late Miocene and Pleistocene. The oldest and youngest lavas are 6.49±0.03 Ma and 1.39±0.18 Ma, respectively, based on ⁴⁰Ar/³⁹Ar ages of five basaltic units. Numerous small mafic vents both within and around the margins of the main silicic dome complex are commonly localized along northwest-striking faults of the Brothers Fault Zone. These vents erupted a diverse suite of basalt to basaltic andesite lava flows that are here differentiated into 15 stratigraphic units based on hand sample texture and mineralogy as well as major and trace element geochemistry. The structural fabric of the Glass Buttes area is dominated by small displacement, discontinuous, en echelon, northwest-striking fault scarps that result from normal to slightly oblique displacements and are commonly linked by relay ramps. Northwest alignment of basaltic and rhyolitic vents, paleotopography, and cross-cutting relationships suggest these faults have been active since at least 6.49±0.03 Ma, the age of the rhyolite lavas in the eastern Glass Buttes are. Faults displace Quaternary sedimentary deposits indicating these structures continue to be active into the Quaternary. Long-term extension rates across northwest-striking faults calculated from 2-5 km long cross section restorations range from 0.004 – 0.02 mm/yr with an average of 0.12 mm/yr. A subordinate population of discontinuous northeast-striking faults form scarps and exhibit mutually cross-cutting relationships with the dominant northwest-striking population. Cross-cutting relationships indicate faulting on northeast-striking faults ceased sometime between 4.70±0.27 Ma and 1.39±0.18 Ma. Gravity data at Glass Buttes reveals prominent northwest- and northeast-trending gravity gradients that closely parallel the strikes of surface faults. These are interpreted as large, deep-seated, normal faults that express themselves in the young basalts at the surface as the discontinuous, en echelon fault segments seen throughout the study area and BFZ in general. Elevated geothermal gradients are localized along these deep-seated structures at two locations: (1) where northwest- and northeast-striking faults intersect,(2) along a very prominent northwest-striking active normal fault bounding the southwest flank of Glass Butte. High average heat flow and elevated average geothermal gradients across the High Lava Plains, and the presence of hydrothermal alteration motivated geothermal resource exploration at Glass Buttes. Temperature gradient drilling by Phillips Petroleum and others between 1977-1981 to depths of up to 600 m defined a local geothermal anomaly underlying the Glass Buttes volcanic complex with a maximum gradient of 224 °C/km. Stratigraphic constraints indicate that near-surface hydrothermal alteration associated with mercury ores ceased before 4.70±0.27 Ma, and is likely associated with the 6.49±0.03 Ma rhyolite eruptions in the eastern part of Glass Buttes. The modern thermal anomaly is not directly related to the pre-4.70±0.27 Ma hydrothermal system; rather it is likely a result of deep fluid circulation along major extensional faults in the area. / Graduation date: 2013 / Includes accompanying DVD with digital data supplement (8 GB).
60

Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg

Durowoju, Olatunde Samod 20 September 2019 (has links)
PhDENV / Department of Hydrology and Water Resources / Geothermal springs are natural geological phenomena that occur throughout the world. South Africa is endowed with several springs of this nature. Thirty-one percent of all geothermal springs in the country are found in Limpopo province. The springs are classified according to the residing mountain: Soutpansberg, Waterberg and Drakensberg. This study focused on the geothermal springs within the Soutpansberg region; that is, Mphephu, Siloam, Sagole and Tshipise. The study was aimed at elucidating on the isotopic signatures and trace metals concentrations from the geothermal springs to their environmental media in Soutpansberg region. This study also assessed the interconnectivity of the isotopic signatures within the ecosystem and evaluated the potential human health risks associated with trace metals from geothermal springs and surrounding soils in the study areas. Geothermal springs and boreholes were sampled for a period of twelve months (May 2016 – May, 2017) to accommodate two major seasons in the study areas. The surrounding soils were sampled vertically from a depth of 10 cm to 50 cm for trace metals and isotopic compositions. Three different plants were sampled at each of the study sites, namely, Amarula tree, Guava tree and Mango tree at Siloam; Acacia tree, Fig tree and Amarula tree at Mphephu; Amarula tree, Lowveld mangosteen and Leadwood tree at Sagole; Sausage tree, Amarula tree and Acacia tree at Tshipise. To achieve the objectives, the physicochemical, geochemical and isotopic compositions of the geothermal springs, boreholes, soils and vegetation were analysed using ion chromatography (IC) (Dionex Model DX 500), inductively coupled plasma-mass spectrometer (ICP-MS), HTP-Elemental analyzer, Liquid water isotope analyzer (LWIA-45-EP) and Liquid scintillation analyzer. The temperature, electrical conductivity (EC), pH and total dissolved solid (TDS) of the geothermal springs and boreholes samples were measeured in situ and in the laboratory. Trace metals analysed in geothermal springs, boreholes, soil and vegetation include Beryllium (Be), Chromium (Cr), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Arsenic (As), Selenium (Se), Cadmium (Cd), Antimony (Sb), Barium (Ba), Vanadium (V), Zinc (Zn), and Mercury (Hg). vii | Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg Results obtained from this study in the studied geothermal springs and boreholes were classified according to their temperature as hot and scalding; except for tepid boreholes. This study has provided comprehensive physicochemical, geochemical and isotopic compositions of the geothermal springs within the Soutpansberg region (Siloam, Mphephu, Sagole and Tshipise). The local meteoric line (δD = 7.56δ18O + 10.64) was generated from rainwater in Vhembe district. This is a crucial component for depicting the source and flow path of the geothermal springs/boreholes; and could be used for future isotopic hydrological studies within the locality. Rain formation processes within Soutpansberg occurred under isotopic equilibrium conditions with minor evaporation effect during rainfall. The δD and δ18O values of the geothermal spring water/boreholes confirm that the waters are of meteoric origin, which implies that rainfall is the fundamental component of these groundwaters because they were derived from the infiltration of rainwater, with significant contribution of another type of water in the deeper part of the aquifer. Na-Cl and Na-HCO3 were established as the water types, which are typical of marine and deep groundwaters which are influenced by the ion - exchange process. The reservoir/aquifer temperature of these springs ranges between 95 – 185°C (Na-K geothermometer), which implies most of the waters are mature water (not native). Hence, geothermal springs water is a mixture of the rainwater and salt water. Radiocarbon values of the geothermal springs ranged from 2700 to 7350 BP, this implies that they are submodern and a mixture of submodern and modern waters. Tritium relative age also corroborates with radiocarbon age, that is the groundwaters were recharged before and after 1952. This gives an indication that the rainfall contributes to the geothermal springs recharge. Various radiocarbon correction models were employed and constrained by tritium relative age. Ingerson and Pearson, Eichinger and Fontes and Garnier correction models have been shown to be the most appropriate models for radiocarbon correction of groundwater in this semi-arid region. Although, geothermal springs water and boreholes are not fit for drinking due to high fluoride content, they could be used for the following: domestic uses (drinking exclusive) due to its softness, direct heating in refrigeration, green-housing, spa, therapeutic uses, aquaculture, sericulture, concrete curing, coal washing and power generation. In contrast with mentioned uses, viii | Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg the studied geothermal springs are currently used for domestic purposes (drinking inclusive), limited irrigation and spa (swimming and relaxation). This is an eco-hydrological study that shows the interconnectivity of isotopic signatures among water (rainwater, geothermal springs and boreholes), soils and vegetation. The soil-water reflects the rainwater/geothermal springs water in isotopic composition, which is more depleted as a result of isotopic fractionation in soil. δD values of soil-water increase, whereas δ13C values in soil-water decrease with the soil depth at all sites. Two equations connecting δD and δ13C in soil-water were deduced per season for soil-water; δ13C = 0.0812δD - 10.657 in winter; δ13C = -0.0278δD - 21.945 for summer. δ13C in soil-water is induced by Crassulacean Acid Metabolism (CAM) (mixture of C3 and C4 photosynthetic cycles) with a stronger C4 trend, which corroborates with δ13C of the geothermal springs. From literature, Amarula and Acacia trees have been documented for isotopic compositions, while this study has given additional information on other plants including Lowveld, Leadwood, Sausage, Fig, Guava and Mango trees. These plants are categorised as C3, C4 and CAM plants. C3 plants include Amarula, Lowveld and Leadwood trees; C4 plants include Acacia and Sausage trees; and CAM plants include Fig, Guava and Mango trees. This study shows that with CAM soils, there is a possibility of having either C3, C4 or CAM vegetation. This finding has shown that the δD and δ13C isotopes in water, soil and vegetation are interrelated, which has been statistically justified. This study has shown the potential human health risks associated with trace metals concentrations from geothermal springs and their surrounding soils. From the geothermal spring’s water, it was found that As, Cr and Cd were the highest contributors to the cancer risk with children having a higher risk than adults. Whereas in soils, it was found that Cr, As and Co were the highest contributors to the cancer risk in the studied communities. Therefore, the cancer risk is high in the general population; that is 1 in 72-162 individuals in children and 1 in 7-107 individuals for adults. The ingestion route seems to be the major contributor to excess lifetime cancer risk followed by the dermal pathway. Therefore, proper monitoring and control measures to protect human health, particularly in children, should be implemented for safety. The study also explored the use of surrounding trees ix | Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg for phytoremediation and found their uptake capacity to be high, thus, they could be used as bio-indicators to assess the level of contamination of trace metals in the soil. In conclusion, this study has eludicated on the isotopic signatures and trace metals concentrations from the geothermal springs and their surrounding soils and vegetation within Soutpansberg. This study has contributed towards the advancement and enhancement of the existing knowledge of the geothermal systems, such that water resource management could be applied successfully in the respective areas with similar characteristics for the benefit of the local communities and society at large. Hence, this study recommends that proper monitoring and control measures need to be put in place to protect human health, especially in children. / NRF

Page generated in 0.1052 seconds