• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gerber-Shiu analysis in some dependent Sparre Andersen risk models

Woo, Jae-Kyung 03 August 2010 (has links)
In this thesis, we consider a generalization of the classical Gerber-Shiu function in various risk models. The generalization involves introduction of two new variables in the original penalty function including the surplus prior to ruin and the deficit at ruin. These new variables are the minimum surplus level before ruin occurs and the surplus immediately after the second last claim before ruin occurs. Although these quantities can not be observed until ruin occurs, we can still identify their distributions in advance because they do not functionally depend on the time of ruin, but only depend on known quantities including the initial surplus allocated to the business. Therefore, some ruin related quantities obtained by incorporating four variables in the generalized Gerber-Shiu function can help our understanding of the analysis of the random walk and the resultant risk management. In Chapter 2, we demonstrate the generalized Gerber-Shiu functions satisfy the defective renewal equation in terms of the compound geometric distribution in the ordinary Sparre Andersen renewal risk models (continuous time). As a result, forms of joint and marginal distributions associated with the variables in the generalized penalty function are derived for an arbitrary distribution of interclaim/interarrival times. Because the identification of the compound geometric components is difficult without any specific conditions on the interclaim times, in Chapter 3 we consider the special case when the interclaim time distribution is from the Coxian class of distribution, as well as the classical compound Poisson models. Note that the analysis of the generalized Gerber-Shiu function involving three (the classical two variables and the surplus after the second last claim) is sufficient to study of four variable. It is shown to be true even in the cases where the interclaim of the first event is assumed to be different from the subsequent interclaims (i.e. delayed renewal risk models) in Chapter 4 or the counting (the number of claims) process is defined in the discrete time (i.e. discrete renewal risk models) in Chapter 5. In Chapter 6 the two-sided bounds for a renewal equation are studied. These results may be used in many cases related to the various ruin quantities from the generalized Gerber-Shiu function analyzed in previous chapters. Note that the larger number of iterations of computing the bound produces the closer result to the exact value. However, for the nonexponential bound the form of bound contains the convolution involving usually heavy-tailed distribution (e.g. heavy-tailed claims, extreme events), we need to find the alternative method to reinforce the convolution computation in this case.
2

Analysis of some risk models involving dependence

Cheung, Eric C.K. January 2010 (has links)
The seminal paper by Gerber and Shiu (1998) gave a huge boost to the study of risk theory by not only unifying but also generalizing the treatment and the analysis of various risk-related quantities in one single mathematical function - the Gerber-Shiu expected discounted penalty function, or Gerber-Shiu function in short. The Gerber-Shiu function is known to possess many nice properties, at least in the case of the classical compound Poisson risk model. For example, upon the introduction of a dividend barrier strategy, it was shown by Lin et al. (2003) and Gerber et al. (2006) that the Gerber-Shiu function with a barrier can be expressed in terms of the Gerber-Shiu function without a barrier and the expected value of discounted dividend payments. This result is the so-called dividends-penalty identity, and it holds true when the surplus process belongs to a class of Markov processes which are skip-free upwards. However, one stringent assumption of the model considered by the above authors is that all the interclaim times and the claim sizes are independent, which is in general not true in reality. In this thesis, we propose to analyze the Gerber-Shiu functions under various dependent structures. The main focus of the thesis is the risk model where claims follow a Markovian arrival process (MAP) (see, e.g., Latouche and Ramaswami (1999) and Neuts (1979, 1989)) in which the interclaim times and the claim sizes form a chain of dependent variables. The first part of the thesis puts emphasis on certain dividend strategies. In Chapter 2, it is shown that a matrix form of the dividends-penalty identity holds true in a MAP risk model perturbed by diffusion with the use of integro-differential equations and their solutions. Chapter 3 considers the dual MAP risk model which is a reflection of the ordinary MAP model. A threshold dividend strategy is applied to the model and various risk-related quantities are studied. Our methodology is based on an existing connection between the MAP risk model and a fluid queue (see, e.g., Asmussen et al. (2002), Badescu et al. (2005), Ramaswami (2006) and references therein). The use of fluid flow techniques to analyze risk processes opens the door for further research as to what types of risk model with dependency structure can be studied via probabilistic arguments. In Chapter 4, we propose to analyze the Gerber-Shiu function and some discounted joint densities in a risk model where each pair of the interclaim time and the resulting claim size is assumed to follow a bivariate phase-type distribution, with the pairs assumed to be independent and identically distributed (i.i.d.). To this end, a novel fluid flow process is constructed to ease the analysis. In the classical Gerber-Shiu function introduced by Gerber and Shiu (1998), the random variables incorporated into the analysis include the time of ruin, the surplus prior to ruin and the deficit at ruin. The later part of this thesis focuses on generalizing the classical Gerber-Shiu function by incorporating more random variables into the so-called penalty function. These include the surplus level immediately after the second last claim before ruin, the minimum surplus level before ruin and the maximum surplus level before ruin. In Chapter 5, the focus will be on the study of the generalized Gerber-Shiu function involving the first two new random variables in the context of a semi-Markovian risk model (see, e.g., Albrecher and Boxma (2005) and Janssen and Reinhard (1985)). It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation, and some discounted joint densities involving the new variables are derived. Chapter 6 revisits the MAP risk model in which the generalized Gerber-Shiu function involving the maximum surplus before ruin is examined. In this case, the Gerber-Shiu function no longer satisfies a defective renewal equation. Instead, the generalized Gerber-Shiu function can be expressed in terms of the classical Gerber-Shiu function and the Laplace transform of a first passage time that are both readily obtainable. In a MAP risk model, the interclaim time distribution must be phase-type distributed. This leads us to propose a generalization of the MAP risk model by allowing for the interclaim time to have an arbitrary distribution. This is the subject matter of Chapter 7. Chapter 8 is concerned with the generalized Sparre Andersen risk model with surplus-dependent premium rate, and some ordering properties of certain ruin-related quantities are studied. Chapter 9 ends the thesis by some concluding remarks and directions for future research.
3

Gerber-Shiu analysis in some dependent Sparre Andersen risk models

Woo, Jae-Kyung 03 August 2010 (has links)
In this thesis, we consider a generalization of the classical Gerber-Shiu function in various risk models. The generalization involves introduction of two new variables in the original penalty function including the surplus prior to ruin and the deficit at ruin. These new variables are the minimum surplus level before ruin occurs and the surplus immediately after the second last claim before ruin occurs. Although these quantities can not be observed until ruin occurs, we can still identify their distributions in advance because they do not functionally depend on the time of ruin, but only depend on known quantities including the initial surplus allocated to the business. Therefore, some ruin related quantities obtained by incorporating four variables in the generalized Gerber-Shiu function can help our understanding of the analysis of the random walk and the resultant risk management. In Chapter 2, we demonstrate the generalized Gerber-Shiu functions satisfy the defective renewal equation in terms of the compound geometric distribution in the ordinary Sparre Andersen renewal risk models (continuous time). As a result, forms of joint and marginal distributions associated with the variables in the generalized penalty function are derived for an arbitrary distribution of interclaim/interarrival times. Because the identification of the compound geometric components is difficult without any specific conditions on the interclaim times, in Chapter 3 we consider the special case when the interclaim time distribution is from the Coxian class of distribution, as well as the classical compound Poisson models. Note that the analysis of the generalized Gerber-Shiu function involving three (the classical two variables and the surplus after the second last claim) is sufficient to study of four variable. It is shown to be true even in the cases where the interclaim of the first event is assumed to be different from the subsequent interclaims (i.e. delayed renewal risk models) in Chapter 4 or the counting (the number of claims) process is defined in the discrete time (i.e. discrete renewal risk models) in Chapter 5. In Chapter 6 the two-sided bounds for a renewal equation are studied. These results may be used in many cases related to the various ruin quantities from the generalized Gerber-Shiu function analyzed in previous chapters. Note that the larger number of iterations of computing the bound produces the closer result to the exact value. However, for the nonexponential bound the form of bound contains the convolution involving usually heavy-tailed distribution (e.g. heavy-tailed claims, extreme events), we need to find the alternative method to reinforce the convolution computation in this case.
4

Analysis of some risk models involving dependence

Cheung, Eric C.K. January 2010 (has links)
The seminal paper by Gerber and Shiu (1998) gave a huge boost to the study of risk theory by not only unifying but also generalizing the treatment and the analysis of various risk-related quantities in one single mathematical function - the Gerber-Shiu expected discounted penalty function, or Gerber-Shiu function in short. The Gerber-Shiu function is known to possess many nice properties, at least in the case of the classical compound Poisson risk model. For example, upon the introduction of a dividend barrier strategy, it was shown by Lin et al. (2003) and Gerber et al. (2006) that the Gerber-Shiu function with a barrier can be expressed in terms of the Gerber-Shiu function without a barrier and the expected value of discounted dividend payments. This result is the so-called dividends-penalty identity, and it holds true when the surplus process belongs to a class of Markov processes which are skip-free upwards. However, one stringent assumption of the model considered by the above authors is that all the interclaim times and the claim sizes are independent, which is in general not true in reality. In this thesis, we propose to analyze the Gerber-Shiu functions under various dependent structures. The main focus of the thesis is the risk model where claims follow a Markovian arrival process (MAP) (see, e.g., Latouche and Ramaswami (1999) and Neuts (1979, 1989)) in which the interclaim times and the claim sizes form a chain of dependent variables. The first part of the thesis puts emphasis on certain dividend strategies. In Chapter 2, it is shown that a matrix form of the dividends-penalty identity holds true in a MAP risk model perturbed by diffusion with the use of integro-differential equations and their solutions. Chapter 3 considers the dual MAP risk model which is a reflection of the ordinary MAP model. A threshold dividend strategy is applied to the model and various risk-related quantities are studied. Our methodology is based on an existing connection between the MAP risk model and a fluid queue (see, e.g., Asmussen et al. (2002), Badescu et al. (2005), Ramaswami (2006) and references therein). The use of fluid flow techniques to analyze risk processes opens the door for further research as to what types of risk model with dependency structure can be studied via probabilistic arguments. In Chapter 4, we propose to analyze the Gerber-Shiu function and some discounted joint densities in a risk model where each pair of the interclaim time and the resulting claim size is assumed to follow a bivariate phase-type distribution, with the pairs assumed to be independent and identically distributed (i.i.d.). To this end, a novel fluid flow process is constructed to ease the analysis. In the classical Gerber-Shiu function introduced by Gerber and Shiu (1998), the random variables incorporated into the analysis include the time of ruin, the surplus prior to ruin and the deficit at ruin. The later part of this thesis focuses on generalizing the classical Gerber-Shiu function by incorporating more random variables into the so-called penalty function. These include the surplus level immediately after the second last claim before ruin, the minimum surplus level before ruin and the maximum surplus level before ruin. In Chapter 5, the focus will be on the study of the generalized Gerber-Shiu function involving the first two new random variables in the context of a semi-Markovian risk model (see, e.g., Albrecher and Boxma (2005) and Janssen and Reinhard (1985)). It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation, and some discounted joint densities involving the new variables are derived. Chapter 6 revisits the MAP risk model in which the generalized Gerber-Shiu function involving the maximum surplus before ruin is examined. In this case, the Gerber-Shiu function no longer satisfies a defective renewal equation. Instead, the generalized Gerber-Shiu function can be expressed in terms of the classical Gerber-Shiu function and the Laplace transform of a first passage time that are both readily obtainable. In a MAP risk model, the interclaim time distribution must be phase-type distributed. This leads us to propose a generalization of the MAP risk model by allowing for the interclaim time to have an arbitrary distribution. This is the subject matter of Chapter 7. Chapter 8 is concerned with the generalized Sparre Andersen risk model with surplus-dependent premium rate, and some ordering properties of certain ruin-related quantities are studied. Chapter 9 ends the thesis by some concluding remarks and directions for future research.
5

Ruin probability and Gerber-Shiu function for the discrete time risk model with inhomogeneous claims / Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis

Bieliauskienė, Eugenija 29 June 2012 (has links)
In this thesis, the discrete time risk model with inhomogeneous claims is considered. This model is used for describing the insurer‘s capital and its components: initial capital, premiums received, and claims paid. The main risk measures, ruin probabilities and Gerber-Shiu function, are investigated and recursive formulas are obtained. These formulas give fast and accurate evaluation of the finite time ruin probabilities and Gerber-Shiu function. However, the infinite time investigations require that the Gerber-Shiu function's values for the initial capital equal to 0 must be known. This is slightly more difficult due to the claim inhomogeneity and for this reason a theorem with explicit expression of the infinite time Gerber-Shiu function for a zero initial capital is proposed. However, for the calculation of the infinite time values, some assumption about underlying claim structure must be made. As a solution the cyclically distributed claims are proposed, the algorithms for application of the theorems are given and numerical examples with graphical output are presented. Finally, a special case of discrete time risk model with inhomogeneous claims distributed according geometric law is investigated. In addition to the main results, another discrete time risk model with inhomogeneous claims acquiring rational values is investigated. Two theorems for evaluation of the finite time ruin probabilities are proved and some examples are presented. / Disertaciniame darbe nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis. Šis modelis aprašo draudimo įmonės turtą įtakojančius veiksnius: pradinį kapitalą, gaunamas įmokas, išmokamas žalas. Išvedamos rekursinės formulės, kurių pagalba galima tiksliai ir greitai rasti baigtinio laiko bankroto tikimybių ir Gerber-Shiu funkcijos vertes. Rekursinės formulės taip pat pateikiamos ir begalinio laiko rizikos matams, tačiau nevienodai pasiskirsčiusių žalų atveju iškyla papildomų sunkumų randant bankroto tikimybę ir Gerber-Shiu funkciją, kai pradinis kapitalas lygus 0. Tam įrodoma atskira teorema, tačiau nedarant jokių prielaidų apie žalų pasiskirstymus, apskaičiuoti vertes lengva tikrai nėra. Kaip išeitis pasiūloma cikliškai pasiskirsčiusių žalų struktūra ir pateikiami algoritmai, leidžiantys teoremas pritaikyti praktiškai. Demonstruojant teoremų ir rekursinių formulių veikimą, pateikiami skaitiniai pavyzdžiai su grafinėmis iliustracijomis bei programų kodai. Galiausiai nagrinėjamas atskiras diskretaus laiko rizikos modelio atvejis, kai žalos pasiskirsčiusios skirtingai pagal geometrinį dėsnį. Disertacijoje taip pat yra nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis, kurios įgyja racionalias reikšmes, bei kintančiomis įmokomis ir pradiniu kapitalu, taip pat įgyjančiais racionalias reikšmes su tam tikra sąlyga. Įrodomos dvi teoremos kaip rasti tokio modelio baigtinio laiko bankroto tikimybę ir keli... [toliau žr. visą tekstą]
6

Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis / Ruin probability and Gerber-Shiu function for the discrete time risk model with inhomogeneous claims

Bieliauskienė, Eugenija 29 June 2012 (has links)
Disertaciniame darbe nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis. Šis modelis aprašo draudimo įmonės turtą įtakojančius veiksnius: pradinį kapitalą, gaunamas įmokas, išmokamas žalas. Išvedamos rekursinės formulės, kurių pagalba galima tiksliai ir greitai rasti baigtinio laiko bankroto tikimybių ir Gerber-Shiu funkcijos vertes. Rekursinės formulės taip pat pateikiamos ir begalinio laiko rizikos matams, tačiau nevienodai pasiskirsčiusių žalų atveju iškyla papildomų sunkumų randant bankroto tikimybę ir Gerber-Shiu funkciją, kai pradinis kapitalas lygus 0. Tam įrodoma atskira teorema, tačiau nedarant jokių prielaidų apie žalų pasiskirstymus, apskaičiuoti vertes lengva tikrai nėra. Kaip išeitis pasiūloma cikliškai pasiskirsčiusių žalų struktūra ir pateikiami algoritmai, leidžiantys teoremas pritaikyti praktiškai. Demonstruojant teoremų ir rekursinių formulių veikimą, pateikiami skaitiniai pavyzdžiai su grafinėmis iliustracijomis bei programų kodai. Galiausiai nagrinėjamas atskiras diskretaus laiko rizikos modelio atvejis, kai žalos pasiskirsčiusios skirtingai pagal geometrinį dėsnį. Disertacijoje taip pat yra nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis, kurios įgyja racionalias reikšmes, bei kintančiomis įmokomis ir pradiniu kapitalu, taip pat įgyjančiais racionalias reikšmes su tam tikra sąlyga. Įrodomos dvi teoremos kaip rasti tokio modelio baigtinio laiko bankroto tikimybę ir keli... [toliau žr. visą tekstą] / In this thesis, the discrete time risk model with inhomogeneous claims is considered. This model is used for describing the insurer‘s capital and its components: initial capital, premiums received, and claims paid. The main risk measures, ruin probabilities and Gerber-Shiu function, are investigated and recursive formulas are obtained. These formulas give fast and accurate evaluation of the finite time ruin probabilities and Gerber-Shiu function. However, the infinite time investigations require that the Gerber-Shiu function's values for the initial capital equal to 0 must be known. This is slightly more difficult due to the claim inhomogeneity and for this reason a theorem with explicit expression of the infinite time Gerber-Shiu function for a zero initial capital is proposed. However, for the calculation of the infinite time values, some assumption about underlying claim structure must be made. As a solution the cyclically distributed claims are proposed, the algorithms for application of the theorems are given and numerical examples with graphical output are presented. Finally, a special case of discrete time risk model with inhomogeneous claims distributed according geometric law is investigated. In addition to the main results, another discrete time risk model with inhomogeneous claims acquiring rational values is investigated. Two theorems for evaluation of the finite time ruin probabilities are proved and some examples are presented.
7

A Generalization of the Discounted Penalty Function in Ruin Theory

Feng, Runhuan January 2008 (has links)
As ruin theory evolves in recent years, there has been a variety of quantities pertaining to an insurer's bankruptcy at the centre of focus in the literature. Despite the fact that these quantities are distinct from each other, it was brought to our attention that many solution methods apply to nearly all ruin-related quantities. Such a peculiar similarity among their solution methods inspired us to search for a general form that reconciles those seemingly different ruin-related quantities. The stochastic approach proposed in the thesis addresses such issues and contributes to the current literature in three major directions. (1) It provides a new function that unifies many existing ruin-related quantities and that produces more new quantities of potential use in both practice and academia. (2) It applies generally to a vast majority of risk processes and permits the consideration of combined effects of investment strategies, policy modifications, etc, which were either impossible or difficult tasks using traditional approaches. (3) It gives a shortcut to the derivation of intermediate solution equations. In addition to the efficiency, the new approach also leads to a standardized procedure to cope with various situations. The thesis covers a wide range of ruin-related and financial topics while developing the unifying stochastic approach. Not only does it attempt to provide insights into the unification of quantities in ruin theory, the thesis also seeks to extend its applications in other related areas.
8

A Generalization of the Discounted Penalty Function in Ruin Theory

Feng, Runhuan January 2008 (has links)
As ruin theory evolves in recent years, there has been a variety of quantities pertaining to an insurer's bankruptcy at the centre of focus in the literature. Despite the fact that these quantities are distinct from each other, it was brought to our attention that many solution methods apply to nearly all ruin-related quantities. Such a peculiar similarity among their solution methods inspired us to search for a general form that reconciles those seemingly different ruin-related quantities. The stochastic approach proposed in the thesis addresses such issues and contributes to the current literature in three major directions. (1) It provides a new function that unifies many existing ruin-related quantities and that produces more new quantities of potential use in both practice and academia. (2) It applies generally to a vast majority of risk processes and permits the consideration of combined effects of investment strategies, policy modifications, etc, which were either impossible or difficult tasks using traditional approaches. (3) It gives a shortcut to the derivation of intermediate solution equations. In addition to the efficiency, the new approach also leads to a standardized procedure to cope with various situations. The thesis covers a wide range of ruin-related and financial topics while developing the unifying stochastic approach. Not only does it attempt to provide insights into the unification of quantities in ruin theory, the thesis also seeks to extend its applications in other related areas.
9

Some Applications of Markov Additive Processes as Models in Insurance and Financial Mathematics

Ben Salah, Zied 07 1900 (has links)
Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes. / This thesis consists mainly of three papers concerned with Markov additive processes, Lévy processes and applications on finance and insurance. The first chapter is an introduction to Markov additive processes (MAP) and a presentation of the ruin problem and basic topics of Mathematical Finance. The second chapter contains the paper "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" written with Manuel Morales and that is published in the European Actuarial Journal. This paper studies the ruin problem for a Markov additive risk process. An expression of the expected discounted penalty function is obtained via identification of the Lévy systems. The third chapter contains the paper "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" that is submitted for publication. This paper presents an extension of the expected discounted penalty function in a setting involving aggregate claims modelled by a subordinator, and Brownian perturbation. This extension involves a sequence of expected discounted functions of successive minima reached by a jump of the risk process after ruin. It has important applications in risk management and in particular, it is used to compute the expected discounted value of capital injection. Finally, the fourth chapter contains the paper "The Minimal Entropy Martingale Measure (MEMM) for a Markov-Modulated Exponential" written with Romuald Hérvé Momeya and that is published in the journal Asia Pacific Financial Market. It presents new results related to the incompleteness problem in a financial market, where the risky asset is driven by Markov additive exponential model. These results characterize the martingale measure satisfying the entropy criterion. This measure is used to compute the price of the option and the portfolio of hedging in an exponential Markov-modulated Lévy model.
10

Some Applications of Markov Additive Processes as Models in Insurance and Financial Mathematics

Ben Salah, Zied 07 1900 (has links)
No description available.

Page generated in 0.0781 seconds