• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In vitro culture and transposon-mediated genetic modification of chicken primordial germ cells

Macdonald, Joni January 2012 (has links)
Primordial germ cells (PGCs) are the embryonic precursors of the germ cell lineage. Segregation of the chicken germ line from somatic cells occurs very early in embryonic development. By day two of incubation chicken PGCs can be isolated from the circulating blood. The in vitro culture of chicken PGCs has significant potential as a tool for the investigation of germ cell development and as a cell-based system for the production of genetically modified chickens. The isolation, culture and manipulation of migratory chicken PGCs reported previously have not been independently validated. Initial attempts to isolate and culture chicken PGCs by reproducing a published protocol proved difficult. Key components of the published culture medium are by their nature variable, including the use of BRL-conditioned medium and animal sera. The protocol also stated that addition of SCF to the culture medium is essential but did not identify the source of SCF used. Several components of the culture conditions were tested including sources and batches of bovine and chicken sera and the growth factors FGF2 and SCF. Chicken PGCs from wild type and GFPexpressing chicken embryos were cultured and several cell lines established, proliferating for more than 100 days in culture. After seventy days in culture a single chicken PGC cell line was shown to retain the potential to develop into functional sperm. This was demonstrated by injection of the cultured chicken PGCs into early chick embryos, which were hatched and produced offspring derived from the injected chicken PGCs. To understand and produce a more robust system for the isolation and propagation of chicken PGCs three signalling pathways, AKT, MAPK and JAK/STAT, were investigated. When any of these signalling pathways were blocked, using chemical inhibitors, chicken PGC proliferation in vitro was significantly inhibited, showing the pathways to be essential for chicken PGC proliferation. Chicken PGCs were treated with individual components of the standard culture medium, FGF2, SCF, animal sera, BRL-conditioned medium, LIF and IGF, and the activation status of the key signalling pathways was assessed by western blot. Individual components of the culture medium induced activation of the AKT and MAPK pathways but not the JAK/STAT pathway. These data increase our understanding of PGC biology and are the first steps towards the development of a feeder- and serum-free medium for the growth of chicken PGCs. Published methods for the genetic manipulation of chicken PGCs are inefficient. To improve the efficiency of stable transgene integration, transposable element-derived gene transfer vectors were assessed for their ability to transpose into the genome of chicken PGCs. Comparison of Tol2 and piggyBac transposable elements, carrying reporter transgenes, demonstrated that both can be used to genetically-modify chicken cells. The incidence of stable transposition achieved was higher when using the Tol2 transposable element in comparison to the piggyBac element. The genetically-modified chicken PGCs formed functional gametes, demonstrated by injection of genetically modified chicken PGCs into host embryos which were hatched and produced transgenic offspring expressing the reporter gene construct.
2

The Molecular Function of the RNA Binding Protein DAZL in Male Germ Cell Survival

Zagore, Leah Louise 24 January 2020 (has links)
No description available.
3

SCF-mediated degradation of the two translational regulators, CPB-3 and GLD-1, during oogenesis in C. elegans

Kisielnicka, Edyta 17 April 2018 (has links) (PDF)
The development of an organism and its adult homeostasis rely on regulatory mechanisms that control the underlying gene expression programs. In certain biological contexts, such as germ cell development, gene expression regulation is largely executed at the post-­‐transcriptional level. This relies on RNA-­‐binding proteins (RBPs), whose activity and expression are also heavily controlled. While the RNA-­‐binding potential of RBPs is currently of intense scrutiny, surprisingly little is known to date about the molecular mechanisms that control RNA-­‐binding proteins abundance in the context of germ cell development. This work identifies the molecular mechanisms that shape expression patterns of two evolutionarily conserved RNA-­‐binding proteins, CPB-­‐3 and GLD-­‐ 1, which belong to CPEB and STAR protein family, respectively. By focusing on their regulation in the C. elegans germ line, this work reveals an involvement of the proteasome in reducing levels of CPB-­‐3/CPEB and GLD-­‐1/STAR at the pachytene-­‐to-­‐diplotene transition during meiotic prophase I. Furthermore, it documents that CPB-­‐3 and GLD-­‐1 are targeted to proteasomal degradation by a conserved SCF ubiquitin ligase complex that utilises SEL-­‐10/Fbxw7 as a substrate recognition subunit. Importantly, destabilisation of both RBPs is likely triggered by their phosphorylation, which is regulated by the mitogen-­‐activated protein kinase, MPK-­‐1, and restricted to the meiotic timepoint of pachytene exit. Lastly, this work investigates the potential consequences of target mRNA regulation upon delayed RBP degradation. Altogether, the collected data characterise a molecular pathway of CPEB and STAR protein turnover, and suggest that MPK-­‐1 signaling may couple RBP-­‐mediated regulation of gene expression to progression through meiosis during oogenesis.
4

Regulation of the FGF/ERK Signaling Pathway: Roles in Zebrafish Gametogenesis and Embryogenesis

Maurer, Jennifer M. 13 October 2017 (has links)
Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in gametogenesis and embryogenesis remain to be fully understood. Using CRISPR/Cas9 genome editing technology, we generated zebrafish lines harboring germ line deletions in dusp6 and dusp2. We do not detect any overt defects in dusp2 mutants, but we find that approximately 50% of offspring from homozygous dusp6 mutants do not proceed through embryonic development. These embryos are fertilized, but are unable to proceed past the first zygotic mitosis and stall at the one-cell stage for several hours before dying by 10 hours post fertilization. We demonstrate that dusp6 is expressed in the gonads of both male and female zebrafish, suggesting that loss of dusp6 causes defects in germ cell production. Notably, the 50% of homozygous dusp6 mutants that complete the first cell division appear to progress through embryogenesis normally and give rise to fertile adults. The fact that offspring of homozygous dusp6 mutants stall at the one-cell stage, prior to activation of the zygotic genome, suggests that loss of dusp6 affects gametogenesis. Further, since only approximately 50% of homozygous dusp6 mutants are affected, we postulate that ERK signaling is tightly regulated and that dusp6 is required to keep ERK signaling within a range that is permissive for gametogenesis. Lastly, since dusp6 is expressed throughout zebrafish embryogenesis, but dusp6 mutants do not exhibit defects after the first cell division, it is possible that other feedback regulators of the ERK pathway compensate for loss of dusp6 at later stages.
5

SCF-mediated degradation of the two translational regulators, CPB-3 and GLD-1, during oogenesis in C. elegans

Kisielnicka, Edyta 05 August 2017 (has links)
The development of an organism and its adult homeostasis rely on regulatory mechanisms that control the underlying gene expression programs. In certain biological contexts, such as germ cell development, gene expression regulation is largely executed at the post-­‐transcriptional level. This relies on RNA-­‐binding proteins (RBPs), whose activity and expression are also heavily controlled. While the RNA-­‐binding potential of RBPs is currently of intense scrutiny, surprisingly little is known to date about the molecular mechanisms that control RNA-­‐binding proteins abundance in the context of germ cell development. This work identifies the molecular mechanisms that shape expression patterns of two evolutionarily conserved RNA-­‐binding proteins, CPB-­‐3 and GLD-­‐ 1, which belong to CPEB and STAR protein family, respectively. By focusing on their regulation in the C. elegans germ line, this work reveals an involvement of the proteasome in reducing levels of CPB-­‐3/CPEB and GLD-­‐1/STAR at the pachytene-­‐to-­‐diplotene transition during meiotic prophase I. Furthermore, it documents that CPB-­‐3 and GLD-­‐1 are targeted to proteasomal degradation by a conserved SCF ubiquitin ligase complex that utilises SEL-­‐10/Fbxw7 as a substrate recognition subunit. Importantly, destabilisation of both RBPs is likely triggered by their phosphorylation, which is regulated by the mitogen-­‐activated protein kinase, MPK-­‐1, and restricted to the meiotic timepoint of pachytene exit. Lastly, this work investigates the potential consequences of target mRNA regulation upon delayed RBP degradation. Altogether, the collected data characterise a molecular pathway of CPEB and STAR protein turnover, and suggest that MPK-­‐1 signaling may couple RBP-­‐mediated regulation of gene expression to progression through meiosis during oogenesis.

Page generated in 0.0942 seconds