• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRANSIENT OPTICAL PROPERTIES OF GERMANIUM UNDER IRRADIATION BY PICOSECOND PULSES

Kennedy, Chandler James, 1943- January 1972 (has links)
No description available.
2

MEASUREMENT OF ULTRAFAST RELAXATION TIMES IN SEMICONDUCTORS USING PICOSECOND PULSES

Smirl, Arthur Lee, 1944- January 1975 (has links)
No description available.
3

Picosecond Measurement of Interband Saturation, Intervalence Band Absorption, and Surface Recombination in Germanium

Perryman, Gary Paul 08 1900 (has links)
The picosecond optical response of five thin germanium samples was measured following intense optical excitation using two variations of the excitation and probe technique. Seven-picosecond laser pulses of wavelength 1.054 um were used to measure the optical transmission of the samples for a variety of probe delays, excitation fluences, and sample temperatures. These parametric experiments were performed in an effort to determine if carrier cooling, carrier diffusion, or carrier recombination dominates the carrier dynamics immediately following excitation. The studies of a 5.7 um thick sample indicated that Auger recombination does not dominate the carrier dynamics, but that the carriers most likely cool immediately to within a few optical phonons of the lattice temperature. Lattice heating may also occur depending on excitation level. Neither cooling nor diffusion was ruled out as a major contributor to the transient optical response. A numerical analysis indicated that, although diffusion may be minimized in the thinner samples, the importance of surface recombination increases as the sample thickness decreases. The lattice temperature dependence of the optical transmission was found not to be in disagreement with the known temperature dependence of the low-density diffusion coefficient. Finally, new structure was observed in the data which is consistent with an increased intervalence band absorption at the highest excitation levels.
4

Picosecond Laser-Induced Transient Gratings and Anisotropic State-Filling in Germanium

Boggess, Thomas F. (Thomas Frederick) 12 1900 (has links)
We present a comparative theoretical study of the transient grating coherent effects in resonant picosecond excitation-probe experiments. Signals in both the probe and conjugate directions are discussed. The effects of recombination, non-radiative scattering and spatial and orientational diffusion are included. The analysis is applied to both a molecular and to a semiconductor model. Signal contributions from concentration and orientational gratings are distinguished and their temporal natures discussed. The theory is used to explain our recent observations in germanium. Included are discussions of picosecond transient grating self-diffraction measurements that can be understood in terms of an orientational grating produced by anisotropic (in k-space) state-filling. Though there have been predictions and indirect experimental evidence for isotropic state-filling in germanium, this is the first direct experimental indication of anisotropic state-filling in a semiconductor.

Page generated in 0.0868 seconds