Spelling suggestions: "subject:"gesteinskunde"" "subject:"edelsteinkunde""
11 |
Verformungsstrukturen und gesamtgesteinschemische Alteration nahe dem spröd-viskosen Übergang an der Pogallo Störungszone, NorditalienPalm, Susanne. Unknown Date (has links)
Universiẗat, Diss., 2000--Giessen.
|
12 |
Structural evolution in the palaeoproterozoic basement (banded iron formation and related rocks) of SW EgyptElkady, Mostafa Fahmy Mostafa. Unknown Date (has links) (PDF)
University, Diss., 2003--Heidelberg.
|
13 |
Lithium, beryllium and boron in high-pressure metamorphic rocks from Syros (Greece)Marschall, Horst R. Unknown Date (has links) (PDF)
University, Diss., 2005--Heidelberg.
|
14 |
Petrophysikalische und technologische Bestimmungen an Baustoffen aus den känozoischen Vulkanprovinzen Siebengebirge und Osteifel (Mittelrhein) /Reingen, Burkhard. January 1993 (has links)
Inaugural-Diss.--Mathematisch-Naturwissenschaftlichen Fakultät--Bonn--Rheinischen Friedrich-Wilhelms-Universität, 1993. / Bibliogr. p. 190-200.
|
15 |
Subduction and continental collision in the Lufilian Arc-Zambesi Belt orogen a petrological, geochemical, and geochronological study of eclogites and whiteschists (Zambia) /John, Timm. Unknown Date (has links) (PDF)
University, Diss., 2001--Kiel.
|
16 |
Multivariate Herkunftsanalyse von Marmor auf petrographischer und geochemischer Basis das Beispiel kleinasiatischer archaischer, hellenistischer und römischer Marmorobjekte der Berliner Antikensammlung und ihre Zuordnung zu mediterranen und anatolischen Marmorlagerstätten /Cramer, Thomas. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
|
17 |
Metamorphe und strukturelle Entwicklung des La-Paz-Kristallinkomplexes, Baja California Sur, MexikoSchürzinger, Andreas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--München.
|
18 |
Petrographie, Geochemie und Differentiation der Alkalibasalte bei Shaba im Zentrum des Südsyrischen Flutbasaltkomplexes, Hawran-Jabal Ad-Drouze : Modellierung der Primärmagmen und der chemischen Zusammensetzung ihrer Wurzelregion im Oberen Erdmantel /Metzner, Christian. January 1992 (has links)
Inaugural-Diss.--Mathematisch-Naturwissenschaftlichen Fakultät--Bonn--Rheinischen Friedrich-Wilhelms-Universität, 1992. / Bibliogr. p. 76-89.
|
19 |
Beitrag zur mathematisch-petrographischen Gefügecharakterisierung für die Beurteilung der Festgesteine hinsichtlich ihrer Aufbereitung und ihrer ProdukteigenschaftenPopov, Oleg 23 July 2009 (has links) (PDF)
Die Analyse des wissenschaftlich-technischen Standes zeigt, dass die gegenwärtige mineralogisch-petrographische Gesteinscharakterisierung in vielen Fällen nur eine verbale Gefügebeschreibung erlaubt. In der Aufbereitungstechnik ist diese Verfahrensweise jedoch nicht ausreichend. Hier ist eine quantitative Charakterisierung der Gesteine erforderlich. Deshalb bestand die Aufgabe darin, eine neue mathematisch-petrographische Methode zur Charakterisierung der unterschiedlichen Gesteinseigenschaften zu entwickeln. Im Ergebnis der neuen mathematisch-petrographischen Methode wurde festgestellt, dass die verbale Beschreibung der Gesteinsstruktur und -textur durch quantitative Gesteinskennwerte ersetzt werden kann. Mit Hilfe der quantitativen Gesteinskennwerte kann eine Prognostizierung relevanter Produkt- bzw. Systemkenngrößen ohne zerkleinerungstechnische Untersuchungen vorgenommen werden. Die Gesteinskenngrößen erlauben eine Einschätzung des Gesteins hinsichtlich Brechbarkeit und Produktkornform einerseits sowie Verschleiß und erforderlichem Energieaufwand andererseits und stellen somit eine wichtige Grundlage für die Auswahl und den Betrieb der Maschinen und Anlagen der Naturstein-Industrie dar.
|
20 |
Tephrostratigraphy, petrography, geochemistry, age and fossil record of the Ganigobis Shale Member and associated glaciomarine deposits of the Dwyka Group, Late Carboniferous, southern Africa / Tephrostratigraphie, Petrographie, Geochemie, Alter und Fossilinhalt des "Ganigobis Shale Members" und assozierte, glaziomarine Ablagerungen der Dwyka Gruppe, Oberkarbon, südliches AfrikaBangert, Berthold January 2000 (has links) (PDF)
Thin, pyroclastic marker beds are preserved in argillaceous units of the Dwyka Group in southern Nambia and South Africa which are the earliest witnesses of volcanism in Karoo-equivalent strata of southern Africa. The aim of this study is to present the field appearance of these marker beds, to characterise their mineralogy, geochemistry and heavy mineral contents and to present new radiometric age data from their juvenile zircons. Carboniferous-Permian Karoo deposits in the Aranos Basin of southern Namibia include the glacially dominated, Carboniferous Dwyka Group and the shelf sediments of the overlying Permian Ecca Group. The Dwyka Group can be subdivided into four upward-fining deglaciation sequences, each capped by relatively fine-grained glaciolacustrine or glaciomarine deposits. The uppermost part of the second deglaciation sequence comprises a thick fossiliferous mudstone unit, referred to as the ”Ganigobis Shale Member”. An abundance of marine macro- and ichnofossils as well as extrabasinally derived ashfall tuff beds characterise the more than 40 m thick mudstones and provide the basis for an integrated high-resolution biostratigraphic and tephrostratigraphic framework. The Ganigobis Shale Member contains remains of paleoniscoid fishes, bivalves, gastropods, scyphozoa, crinoid stalks, sponges and sponge spicules, radiolaria, coprolites and permineralised wood. These mostly marine body and trace fossils record the extent of the first of a series of marine incursions into the disintegrating Gondwanan interior as early as the Carboniferous. Within the Ganigobis Shale Member 21 bentonitic tuff beds displaying a thickness of 0.1 and 2.0 cm were determined which in part can be traced laterally over tens of kilometres indicating an ashfall derivation. Further bentonitic tuff beds of the Dwyka Group were detected in cut banks of the Orange River near Zwartbas in the Karasburg Basin (southern Namibia). The 65 tuff beds vary between 0.1 and 4.0 cm in thickness. Due to a similar fossil content and age of the background deposits, the tuff beds are thought to have originated from the same source area as those from the Aranos Basin. Thin-sections reveal the derivation of the tuff beds as distal fallout ashes produced by explosive volcanic eruptions. The matrix consists of a micro- to cryptocrystalline clay mineral-quartz mixture. Rare fragments of splinter quartz, completely recrystallized ash-sized particles of former volcanic glass and few apatite and zircon grains are the only juvenile components. The tuff beds contain as non-opaque, juvenile heavy minerals mostly zircon, apatite, monazite and sphene but also biotite, garnet, hornblende and tourmaline. Geochemical analyses point to an original, intermediate to acid composition of the tuff samples. LREE enrichment and Eu-anomalies show that the parent magma of the tuff beds was a highly evolved calc-alkaline magma. Tectonomagmatic discrimination diagrams point to a volcanic arc setting. Bedding characteristics and the lack of any Carboniferous-Permian volcanic successions onshore Namibia makes an aeolian transport of the ash particles over larger distances likely. Siliceous ashes could thus have been transported by prevailing south-westerly winds from arc-related vents in South America to southern Africa. A second, more local source area could have been located in an intracontinental rift zone along the western margin of southern Africa which is indicated by north-south directed ice-flow directions in the Late Carboniferous. SHRIMP-based age determinations of juvenile magmatic zircons separated from the tuff beds allow a new time calibration of Dwyka Group deglaciation sequences II - IV and the Dwyka/Ecca boundary. Zircons of the Ganigobis Shale Member yield SHRIMP-ages of 302-300 Ma. This dates the uppermost part of the second deglaciation sequence in southern Namibia to the Late Carboniferous (Gzelian) and provides a minimum age for the onset of Karoo-equivalent marine deposition. The age of the uppermost argillaceous part of the third deglaciation sequence (297 Ma) was determined from zircons of a tuffaceous bed sampled in a roadcut in the Western Cape Province, South Africa. The deposits correlate with the Hardap Shale Member in the Aranos Basin of southern Namibia which are part of much more widespread Eurydesma transgression. The age of the Dwyka/Ecca boundary was determined by SHRIMP-measurements of juvenile zircons from two tuff beds of the basal Prince Albert Formation sampled in the Western Cape Province (South Africa). The zircons revealed ages of 289 - 288 Ma which date the Dwyka/Ecca boundary at about 290 Ma. According to these ages, deglaciation sequences II-IV lasted for 5 Ma on average. / Geringmächtige, bentonitische Tuffe treten in Tonsteinabschnitten der karbonen Dwyka Gruppe im südlichen Namibia und Südafrika auf. Sie repräsentieren die ersten Hinweise auf eine vulkanische Tätigkeit innerhalb der Karoosedimente im südlichen Afrika. Die vorliegende Dissertation faßt die Geländebeschreibung der Tuffe, ihre Petrographie, Mineralogie und Geochemie zusammen. Juvenile Zirkone der Tuffe erlaubten eine radiometrisches Altersermittlung mittels SHRIMP-Analyse. Sie stellen somit die ersten radiometrisch exakt ermittelten Altersdaten innerhalb der Dwyka Gruppe dar. Permokarbone Karoosedimente des Aranos Beckens in Südnamibia setzen sich aus der glazigenen Dwyka Gruppe des Karbons und den Schelfsedimenten der folgenden Ecca Gruppe des Perms zusammen. Die Dwyka-Gruppe kann dabei in vier Entgletscherungssequenzen unterteilt werden. Der oberste Bereich jeder Entgletscherungssequenz ist meist durch glaziomarine Ablagerungen gekenn-zeichnet. Im Fall der zweiten Entgletscherungssequenz handelt es sich um einen mehr als 40 m mäch-tigen, fossilführenden Tonsteinabschnitt, der als ‘Ganigobis Shale Member’ bekannt ist. Eine Vielzahl von meist marinen Makro- und Spurenfossilien (palaeoniskoide Fischen, Bivalven, Gastropoden, Scyphozoen, Crinoideenstielglieder, Radiolarien) sowie distale Aschentuffe bilden die Grundlage für eine hochauflösende, biostratigraphische und tephrostratigraphische Gliederung des ‘Ganigobis Shale Members’. 21 bentonitische, lateral verfolgbare Aschentuffe mit einer Mächtigkeit zwischen 0.1 und 2.0 cm wurden innerhalb des ‘Ganigobis Shale Member’ bestimmt. 65 weitere, bis 4.0 cm mächtige Aschentuffe der Dwyka Gruppe wurden in Uferbänken des Orange Rivers in der Nähe von Zwartbas im Karasburg Becken Südnamibias entdeckt. Aufgrund eines ähnlichen Fossilinhaltes der Hinter-grundsedimente und eines ähnlichen Alters der Tuffe kann von dem gleichen Herkunftsgebiet der Aschen ausgegangen werden. Dünnschliffe der Tuffe zeigen, daß es sich bei den Horizonten um distale Aschenfallablagerungen handelt, die durch explosiven Vulkanismus gefördert wurden. Die Matrix besteht aus einer mikro- bis kryptokristallinem Tonmineral-Quarz- Mischung. Idiomorpher, hexagonaler Quarz, Splitterquarze und Quarzfragmente, vollständig rekristallisierte Aschenkörner und vereinzelt Schwerminerale wie Apatit und Zirkon sind weitere juvenile Komponenten. Folgende transparente, juvenile Schwerminerale treten auf: Zirkon, Apatit, Monazit, Titanit, Biotit, Granat, Hornblende und Turmalin. Geochemische Analysen weisen auf eine intermediäre bis saure Ausgangszusammensetzung der Tuffe hin. Die Anreicherung der LREE und die Eu-Anomalien zeigen, daß die Zusammensetzung des Ausgangsmagma der Tuffe kalkalkalisch und sehr differenziert war. Tektonomagmatische Diskrimi-nationsdiagramme deuten eine Subduktionszone als Herkunftsgebiet der Tuffe an. Die Korngröße der Tuffe und das Fehlen jeglicher permokarboner, vulkanischer Abfolgen in Namibia läßt auf einen Transport der Aschen über größere Distanzen schließen. Saure Aschen könnten bei vorherrschenden südwestlichen Windrichtungen von Südamerika, wo saurer Inselbogenmagmatismus im Permokarbon bekannt ist, nach Südafrika und Namibia transportiert worden sein. Ein zweites, lokaleres Herkunfts-gebiet der Aschentuffe könnte innerhalb einer kontinentalen Riftzone am Westrand des südlichen Afrikas gelegen haben. Sie ist im Oberkarbon durch allgemein nord-südgerichtete Eisstromrichtungen im Aranos und Karasburg Becken (Südnamibia) und im Perm durch die marinen Ablagerungen der Whitehill Formation (Ecca Gruppe) angedeutet. Altersbestimmungen an den juvenilen Zirkonen ermöglichten sowohl eine neue Zeiteinschätzung der Entgletscherungssequenzen II - IV innerhalb der Dwyka Gruppe als auch eine zeitliche Neukali-brierung der Dwyka-/Ecca Grenze. Datierte Zirkone aus Tuffen des Ganigobis Shale Members ergaben SHRIMP-Alter von 302 - 300 Ma. Damit fallen der oberste Bereich der zweiten Entgletscherungssequenz und die in den marinen enthaltenen Fossilien in das Oberkarbon (Gzelian). Das Alter des Topbereichs der dritten Entgletscherungssequenz (297 Ma) wurde an Zirkonen einer tuffitischen Schicht aus der Provinz Westkap in Südafrika bestimmt. Die dort aufgeschlossenen Ablagerungen korrelieren mit dem Hardap Shale Member im Aranos Becken Süd-namibias und sind Teil der weltweit bekannten Eurydesma - Transgression. Das Alter der Dwyka / Ecca-Grenze wurde an juvenilen Zirkonen von Tuffen der basalen Prince Albert Formation (Ecca Gruppe) in der Provinz Westkap (Südafrika) bestimmt. Die U-Pb - Messungen an den Zirkonen ergaben Alter von 289 - 288 Ma, die die Dwyka / Ecca-Grenze bei circa 290 Ma festlegen.
|
Page generated in 0.0393 seconds