• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beitrag zur mathematisch-petrographischen Gefügecharakterisierung für die Beurteilung der Festgesteine hinsichtlich ihrer Aufbereitung und ihrer Produkteigenschaften

Popov, Oleg 23 July 2009 (has links) (PDF)
Die Analyse des wissenschaftlich-technischen Standes zeigt, dass die gegenwärtige mineralogisch-petrographische Gesteinscharakterisierung in vielen Fällen nur eine verbale Gefügebeschreibung erlaubt. In der Aufbereitungstechnik ist diese Verfahrensweise jedoch nicht ausreichend. Hier ist eine quantitative Charakterisierung der Gesteine erforderlich. Deshalb bestand die Aufgabe darin, eine neue mathematisch-petrographische Methode zur Charakterisierung der unterschiedlichen Gesteinseigenschaften zu entwickeln. Im Ergebnis der neuen mathematisch-petrographischen Methode wurde festgestellt, dass die verbale Beschreibung der Gesteinsstruktur und -textur durch quantitative Gesteinskennwerte ersetzt werden kann. Mit Hilfe der quantitativen Gesteinskennwerte kann eine Prognostizierung relevanter Produkt- bzw. Systemkenngrößen ohne zerkleinerungstechnische Untersuchungen vorgenommen werden. Die Gesteinskenngrößen erlauben eine Einschätzung des Gesteins hinsichtlich Brechbarkeit und Produktkornform einerseits sowie Verschleiß und erforderlichem Energieaufwand andererseits und stellen somit eine wichtige Grundlage für die Auswahl und den Betrieb der Maschinen und Anlagen der Naturstein-Industrie dar.
2

Beitrag zur mathematisch-petrographischen Gefügecharakterisierung für die Beurteilung der Festgesteine hinsichtlich ihrer Aufbereitung und ihrer Produkteigenschaften

Popov, Oleg 06 June 2007 (has links)
Die Analyse des wissenschaftlich-technischen Standes zeigt, dass die gegenwärtige mineralogisch-petrographische Gesteinscharakterisierung in vielen Fällen nur eine verbale Gefügebeschreibung erlaubt. In der Aufbereitungstechnik ist diese Verfahrensweise jedoch nicht ausreichend. Hier ist eine quantitative Charakterisierung der Gesteine erforderlich. Deshalb bestand die Aufgabe darin, eine neue mathematisch-petrographische Methode zur Charakterisierung der unterschiedlichen Gesteinseigenschaften zu entwickeln. Im Ergebnis der neuen mathematisch-petrographischen Methode wurde festgestellt, dass die verbale Beschreibung der Gesteinsstruktur und -textur durch quantitative Gesteinskennwerte ersetzt werden kann. Mit Hilfe der quantitativen Gesteinskennwerte kann eine Prognostizierung relevanter Produkt- bzw. Systemkenngrößen ohne zerkleinerungstechnische Untersuchungen vorgenommen werden. Die Gesteinskenngrößen erlauben eine Einschätzung des Gesteins hinsichtlich Brechbarkeit und Produktkornform einerseits sowie Verschleiß und erforderlichem Energieaufwand andererseits und stellen somit eine wichtige Grundlage für die Auswahl und den Betrieb der Maschinen und Anlagen der Naturstein-Industrie dar.
3

Structural and metamorphic evolution of the Lycian Nappes and the Menderes Massif (southwest Turkey) : geodynamic implications and correlations with the Aegean domain

Rimmelé, Gaëtan January 2003 (has links)
West Anatolien, welches die östliche laterale Verlängerung der ägäischen Domäne darstellt, besteht aus mehreren tektono-metamorphen Einheiten, die Hochdruck/Niedrigtemperatur (HP/LT) Gesteine aufweisen. Einige dieser metamorphen Gesteine Zeugen der panafrikanischen oder der kimmerischen Orogenese sind, entstanden andere während die jüngere Alpine Orogenese. <br /> <br /> Das Menderes Massiv, in der SW Türkei, wird im N von Decken der Izmir-Ankara Suturzone, im E von der Afyon Zone sowie im S von den Lykischen Decken tektonisch überlagert. In den Metasedimenten der Lykischen Decken und dem darunterliegenden Menderes Massiv treten weitverbreitete Vorkommen von Fe-Mg-Carpholith-führenden Gesteinen auf. Diese neue Entdeckung belegt, dass beide Deckenkomplexe während der alpinen Orogenese unter HP/LT Bedingungen überprägt wurden. Die P-T Bedingungen für die HP-Phase liegen bei 10-12 kbar/400&#176;C in den Lykischen Decken und 12-14 kbar/470-500&#176;C im südlichen Menderes Massiv, was eine Versenkung von min. 30 km während der Subduktion und Deckenstapelung dokumentiert.<br /> <br /> Die Analyse der duktilen Deformation sowie thermobarometrische Berechnungen zeigen, dass die Lykischen Metasedimente unterschiedliche Exhumierungspfade nach der gemeinsamen HP-Phase durchliefen. In Gesteinen, die weiter entfernt vom Kontakt der Lykischen Decken mit dem Menderes Massiv liegen, lässt sich lediglich ein Hochdruck-Abkühlungspfad belegen, der mit einer &bdquo;top-NNE&ldquo; Bewegung an die Akçakaya Scherzone gebunden ist. Diese Scherzone ist ein Intra-Deckenkontakt, der in den frühen Stadien, innerhalb des Stabilitätsfeldes von Fe-Mg-Carpholith, der Exhumierung aktiv war. Die nahe am Kontakt mit dem Menderes Massiv gelegenen Gesteine weisen wärmere Exhumierungspfade auf, die mit einer &bdquo;top-E&ldquo; Scherung assoziiert sind. Diese Deformation erfolgte nach dem S-Transport der Lykischen Decken und somit zeitgleich mit der Reaktivierung des Kontakts der Lykischen Decken/Menderes Massiv als Hauptscherzone (der Gerit Scherzone), die eine späte Exhumierung der HP-Gesteine unter wärmeren Bedingungen erlaubte. Die Hochdruckgesteine des südlichen Menderes Massiv weisen eine einfache isothermale Dekompression bei etwa 450&#176;C während der Exhumierung nach. Die begleitende Deformation während der Hochdruckphase und der Exhumierung ist durch eine starke N-S bis NE-SW&ndash;Dehnung charakterisiert.<br /> <br /> Das Alter der Hochdruckmetamorphose in den Lykischen Decken kann zwischen oberster Kreide (jüngste Sedimente in der Lykischen allochthonen Einheit) und Eozän (Kykladische Blauschiefer) festgelegt werden. Ein mögliches Paläozänes Alter kann somit angenommen werden. Das Alter der Hochdruckmetamorphose in den Deckschichten des Menderes Massiv liegt demnach zwischen mittlerem Paläozän (oberste Metaolistostrome der Menderes &bdquo;Cover&ldquo;-Einheit) und dem mittleren Eozän (HP-Metamorphose in der Dilek-Selçuk Region des Kykladenkomplex). Apatit-Spaltspur-Daten von beiden Seiten des Kontakts der Lykischen Decken/Menderes Massiv lassen darauf schließen, daß diese Gesteine im späten Oligozän/frühen Miozän sehr nahe der Paläo-Oberfläche waren. <br /> <br /> Die hier dargestellten Arbeiten in den Lykischen Decken und im Menderes Massiv lassen auf die Existenz eines ausgedehnten alpinen HP-Metamorphose-Gürtels im SW der Türkei schließen. Die Hochdruckgesteine wurden im Akkretionskomplex einer N-wärtigen Subduktion des Neo-Tethys Ozeans gebildet, der spät-Kretazisch obduziert und dann in die früh-Tertiäre Kontinentalkollision des passiven Randes (Anatolid-Taurid Block) mit der nördlichen Platte (Sakarya Mikrokontinent) miteinbezogen war. Im Eozän bestand der Akkretionskomplex aus drei gestapelten Hochdruckeinheiten. Die Unterste entspricht dem eingeschuppten Kern und Hochdruck-&bdquo;Cover&ldquo; des Menderes Massivs. Die Mittlere besteht aus dem Kykladischen Blauschiefer-Komplex (Dilek-Selçuk Einheit) und die oberste Einheit wird von den Hochdruck Lykischen Decken gebildet. <br /> <br /> Während die Basiseinheiten der ägäischen und anatolischen Region tektonisch unterschiedliche Prä-mesozoische Geschichten durchliefen, wurden sie wahrscheinlich am Ende des Paläozikums zusammengeführt und durchliefen dann ein gemeinsame mesozoische Geschichte. Dann wurden die Basis und ihre Deckschichten, ebenso wie die Kykladischen Blauschiefer und Lykischen Decken, in ähnlich entstandene akkretionäre Komplexe während des Eozäns und Oligozäns involviert. / Western Anatolia that represents the eastward lateral continuation of the Aegean domain is composed of several tectono-metamorphic units showing occurrences of high-pressure/low-temperature (HP-LT) rocks. While some of these metamorphic rocks are vestiges of the Pan-African or Cimmerian orogenies, others are the result of the more recent Alpine orogenesis. <br /> <br /> In southwest Turkey, the Menderes Massif occupies an extensive area tectonically overlain by nappe units of the Izmir-Ankara Suture Zone in the north, the Afyon Zone in the east, and the Lycian Nappes in the south. In the present study, investigations in the metasediments of the Lycian Nappes and underlying southern Menderes Massif revealed widespread occurrences of Fe-Mg-carpholite-bearing rocks. This discovery leads to the very first consideration that both nappe complexes recorded HP-LT metamorphic conditions during the Alpine orogenesis. P-T conditions for the HP metamorphic peak are about 10-12 kbar/400&#176;C in the Lycian Nappes, and 12-14 kbar/470-500&#176;C in the southern Menderes Massif, documenting a burial of at least 30 km during subduction and nappe stacking. <br /> <br /> Ductile deformation analysis in concert with multi-equilibrium thermobarometric calculations reveals that metasediments from the Lycian Nappes recorded distinct exhumation patterns after a common HP metamorphic peak. The rocks located far from the contact separating the Lycian Nappes and the Menderes Massif, where HP parageneses are well preserved, retained a single HP cooling path associated with top-to-the-NNE shearing related to the Akçakaya shear zone. This zone of strain localization is an intra-nappe contact that was active in the early stages of exhumation of HP rocks, within the stability field of Fe-Mg-carpholite. The rocks located close to the contact with the Menderes Massif, where HP parageneses are completely retrogressed into chlorite and mica, recorded warmer exhumation paths associated with top-to-the-E intense shearing. This deformation occurred after the southward emplacement of Lycian Nappes, and is contemporaneous with the reactivation of the &rsquo;Lycian Nappes-Menderes Massif&prime; contact as a major shear zone (the Gerit shear zone) that allowed late exhumation of HP parageneses under warmer conditions. The HP rocks from the southern Menderes Massif recorded a simple isothermal decompression at about 450&#176;C during exhumation, and deformation during HP event and its exhumation is characterized by a severe N-S to NE-SW stretching.<br /> <br /> The age of the HP metamorphism recorded in the Lycian Nappes is assumed to range between the Latest Cretaceous (age of the youngest sediments in the Lycian allochthonous unit) and the Eocene (age of the Cycladic Blueschists). A probable Palaeocene age is suggested. The age of the HP metamorphism that affected the cover series of the Menderes Massif is constrained between the Middle Palaeocene (age of the uppermost metaolistostrome of the Menderes &rsquo;cover&prime;) and the Middle Eocene (age of the HP metamorphism in the Dilek-Selçuk region that belongs to the Cycladic Complex). Apatite fission track data for the rocks on both sides of the &rsquo;Lycian Nappes/Menderes Massif&rsquo; contact suggest that these rocks were very close to the paleo-Earth surface in the Late Oligocene-Early Miocene time.<br /> <br /> This study in the Lycian Nappes and in the Menderes Massif establishes the existence of an extensive Alpine HP metamorphic belt in southwest Turkey. HP rocks were involved in the accretionary complex related to northward-verging subduction of the Neo-Tethys Ocean, Late Cretaceous obduction and subsequent Early Tertiary continental collision of the passive margin (Anatolide-Tauride block) beneath the active margin of the northern plate (Sakarya micro-continent). During the Eocene, the accretionary complex was made of three stacked HP units. The lowermost corresponds to the imbricated &rsquo;core&prime; and HP &rsquo;cover&prime; of the Menderes Massif, the intermediate one consists of the Cycladic Blueschist Complex (Dilek-Selçuk unit), and the uppermost unit is made of the HP Lycian Nappes.<br /> <br /> Whereas the basement units of both Aegean and Anatolian regions underwent a different pre-Mesozoic tectonic history, they were probably juxtaposed by the end of the Paleozoic and underwent a common Mesozoic history. Then, the basements and their cover, as well as the Cycladic Blueschists and the Lycian Nappes were involved in similar evolutional accretionary complexes during the Eocene and Oligocene times.
4

Cathodoluminescence and characterisation of defect structures in quartz with applications to the study of granitic rocks

Müller, Axel 21 June 2000 (has links)
No description available.
5

Deformation von Fassadenplatten aus Marmor: Schadenskartierungen und gesteinstechnische Untersuchungen zur Verwitterungsdynamik von Marmorfassaden / Deformation of marble facade panels: damage mapping and rock physical investigations on the weathering dynamics of marble cladding

Koch, Andreas 11 October 2005 (has links)
No description available.
6

Verbundene Mikroporosität in Kristallingesteinen / Fallstudie Felslabor Grimsel

Schild, Maren 04 November 1999 (has links)
No description available.
7

Eindimensionale Kompression überkonsolidierter bindiger Böden am Beispiel des Gipskeupers

Hornig, Ernst-Dieter 10 May 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit einer Methode zur Bestimmung von realistischeren Steifemoduln für eine genauere Setzungsprognose von Flachgründungen in sehr „laborfeindlichen“ veränderlich festen Gesteinen. Die vergleichenden Laboruntersuchungen an teilverwitterten Keuperböden ergaben, dass die Steifemoduln aus den K0-Triaxialversuchen um den Faktor zwei bis drei größer sind als die Moduln aus den Standardoedometerversuchen. Durch, sowohl analytische, wie auch numerische, Nachrechnungen der durchgeführten Feldversuche und der Setzungsmessungen konnte nachgewiesen werden, dass mit Moduln aus K0-Triaxialversuchen deutlich zutreffendere Setzungsprognosen im Keuper möglich sind, als mit Moduln aus den Oedometerversuchen. Es konnte eine deutliche Abhängigkeit der Entwicklung des Steifemoduls von der Belastungsgeschichte, insbesondere im Übergangsbereich von der „echten“ Wiederbelastung zur Erstbelastung, gefunden werden. Für grobe Näherungen, z.B. für Vorbemessungen, werden Abhängigkeiten zwischen Auflastspannungen und Steifemoduln für die Erst- und für die Wiederbelastung angegeben. So lassen sich Moduln für beliebige Spannungen direkt abschätzen. Aus den abgeleiteten Moduluszahlen m des untersuchten Spannungs-Verformungsverhaltens von Böden, können, insbesondere unter Einbeziehung von Daten aus der internationalen Literatur, Korrelationsgleichungen in Abhängigkeit von Anfangsporenzahl bzw. Anfangsporenanteil mit guten bis sehr guten Regressionen angegeben werden. Da der Steifeexponent a nur geringfügig vom Anfangsporenanteil n abhängt und an den in dieser Arbeit untersuchten Böden weder sinnvolle Korrelationen mit R > 0,8 zwischen a und n, noch Abhängigkeiten von a zur Korngröße gefunden wurden, werden für die Steifeexponenten Mittelwerte angegeben.
8

Eindimensionale Kompression überkonsolidierter bindiger Böden am Beispiel des Gipskeupers

Hornig, Ernst-Dieter 21 October 2011 (has links)
Die vorliegende Arbeit beschäftigt sich mit einer Methode zur Bestimmung von realistischeren Steifemoduln für eine genauere Setzungsprognose von Flachgründungen in sehr „laborfeindlichen“ veränderlich festen Gesteinen. Die vergleichenden Laboruntersuchungen an teilverwitterten Keuperböden ergaben, dass die Steifemoduln aus den K0-Triaxialversuchen um den Faktor zwei bis drei größer sind als die Moduln aus den Standardoedometerversuchen. Durch, sowohl analytische, wie auch numerische, Nachrechnungen der durchgeführten Feldversuche und der Setzungsmessungen konnte nachgewiesen werden, dass mit Moduln aus K0-Triaxialversuchen deutlich zutreffendere Setzungsprognosen im Keuper möglich sind, als mit Moduln aus den Oedometerversuchen. Es konnte eine deutliche Abhängigkeit der Entwicklung des Steifemoduls von der Belastungsgeschichte, insbesondere im Übergangsbereich von der „echten“ Wiederbelastung zur Erstbelastung, gefunden werden. Für grobe Näherungen, z.B. für Vorbemessungen, werden Abhängigkeiten zwischen Auflastspannungen und Steifemoduln für die Erst- und für die Wiederbelastung angegeben. So lassen sich Moduln für beliebige Spannungen direkt abschätzen. Aus den abgeleiteten Moduluszahlen m des untersuchten Spannungs-Verformungsverhaltens von Böden, können, insbesondere unter Einbeziehung von Daten aus der internationalen Literatur, Korrelationsgleichungen in Abhängigkeit von Anfangsporenzahl bzw. Anfangsporenanteil mit guten bis sehr guten Regressionen angegeben werden. Da der Steifeexponent a nur geringfügig vom Anfangsporenanteil n abhängt und an den in dieser Arbeit untersuchten Böden weder sinnvolle Korrelationen mit R > 0,8 zwischen a und n, noch Abhängigkeiten von a zur Korngröße gefunden wurden, werden für die Steifeexponenten Mittelwerte angegeben.:INHALTSVERZEICHNIS KURZFASSUNG………………………………………………………………………..VI ABSTRACT…………………………………………………………………..………..VII VERWENDETE BEZEICHNUNGEN, ABKÜRZUNGEN UND INDIZES……………..….. VIII TABELLENVERZEICHNIS…………………………………………………………........ X BILDVERZEICHNIS……………………………………………………………....… XIII 1. EINLEITUNG UND AUFGABENSTELLUNG ………………………………………… 1 2. GLIEDERUNG, AUFBAU UND ZIEL DER ARBEIT ……………………...…………... 3 3. ZUR GEOLOGIE DES GIPSKEUPERS ……………………….…………………….... 8 3.1 Übersicht über die geologische Situation …………….…………………...… 8 3.2 Entstehung und heutiger Zustand des Gipskeupers als Baugrund ……… 11 3.2.1 Einleitung ……………………………………….…………………..… 11 3.2.2 Entstehung der vorbelasteten Böden …………………………………..12 3.2.3 Geologische Vorbelastung……………….….………………………… 13 3.2.4 Bodenkennwerte und bodenmechanische Eigenschaf-ten……….……...14 3.2.5 Heutiger Zustand als Baugrund (Verwitterungsgrad)……………..…... 14 3.2.6 Verwitterung und Entfestigung der Keuperböden…………………….. 18 3.2.7 Entfestigung durch Entlastung………………………………………… 19 3.2.8 Entfestigung durch Verwitterung…………………………………..…. 20 3.2.9 Keupermechanik im Überblick………..………………………………. 21 3.2.9.1 Horizontale Vorspannung und K0-Wert………………..…….. 23 3.2.9.2 Vergleich und Bewertung der heutigen Baugrundsituation….. 24 3.2.10 Abschließende Bewertung zu Kapitel 3.2……………………….……. 25 4. STAND DER FORSCHUNG UND ENTWICKLUNG………………………………….. 26 4.1 Grundlagen der eindimensionalen Kompression………………………….. 26 4.1.1 Spannungen………………………………………………………...….. 26 4.1.2 Verformungen……………………………………………….……..….. 27 4.2 Spannungs-Verformungsbeziehungen der eindimensionalen Kompression…………………………………………………………….…… 29 4.2.1 Allgemeines…………………………………………………………… 29 4.2.2 Steifemodul nach DIN 18135………………………………………..... 30 4.2.3 Kompressions- und Schwellindex nach TERZAGHI……………….… 30 4.2.4 Verdichtungszahl nach OHDE……………………………………...…. 32 4.2.5 Tangentenmodul nach JANBU………………………………………... 33 4.2.6 Steifemodul in Abhängigkeit der Belastungsgeschichte nach RUDERT und FRITSCHE….................................................................. 33 4.2.7 Steifemodul in Abhängigkeit der Belastungsgeschichte nach BIAREZ und HICHER………………………………………………... 35 4.3 Literaturübersicht zur eindimensionalen Kompression verschiedener Böden………………………………………………………… 36 4.3.1 Steifemodul als Sekantenmodul nach DIN 18135 für Keuperböden…. 36 4.3.2 Kompressions- und Schwellindex nach TERZAGHI für alle Böden…. 47 4.3.3 Kompressions- u. Schwellindex für Keuperböden und vgl. Böden…... 51 4.3.4 Tangentenmodul nach JANBU (1963) für alle Böden………………… 52 4.3.5 Tangentenmodul für Keuperböden und für vergleichbare Böden…..… 55 5. UNTERSUCHTE BÖDEN UND PROBENNAHME………………………………….... 59 5.1 Gipskeuper aus Sindelfingen………………………………………………... 59 5.2 Gipskeuper aus Stuttgart-West……………………...…………………...… 60 5.3 Lößlehm……………………………………………………………………… 62 5.4 Filderlehm………………………………………………………………….… 62 5.5 Opalinuston……………………………………………………………..…… 63 5.6 Sand-Opalinuston…………………………………………………………… 63 6. LABORVERSUCHE ZUR BESCHREIBUNG DES GIPSKEUPERS……………………. 64 6.1 Natürliche Wassergehalte, Konsistenzen und Trockendichten…………... 64 6.2 Körnungslinien…………………………………………………………….… 64 6.3 Korndichten……………………………………………………………..…… 66 6.4 Wasseraufnahmevermögen……………………………………………...….. 66 6.5 Quellversuche……………………………………………………………….. 67 6.6 Mineralogie……………………………………………………………...…… 67 6.7 Scherparameter……………………………………………………………… 67 6.8 Vergleich der eigenen Scherparameter mit Werten aus vorliegenden Veröffentlichungen………………………………………………………….. 68 7. LABORVERSUCHE ZUR ERMITTLUNG DES SPANNUNGS-VERFORMUNGSVERHALTENS……………………………………………………. 69 7.1 Einflüsse bei Kompressionsversuchen……………………………….....….. 69 7.2 Versuchmethoden……………………………………………………...…..… 70 7.2.1 Standard-Oedometer nach DIN 18135………………………….…….… 70 7.2.1.1 Gerätebeschreibung und Versuchsprinzip…………………...…. 70 7.2.1.2 Datenerfassung und bezogene Setzung………………………… 71 7.2.2 Oedometer mit kontinuierlicher Laststeigerung………………………... 71 7.2.2.1 Gerätebeschreibung und Versuchsprinzip…………………….... 72 7.2.2.2 Datenerfassung und bezogene Setzung………………………… 73 7.2.3 K0-Triaxialversuche im computergesteuerten Versuchsstand GDS…….. 73 7.2.3.1 Gerätebeschreibung und Versuchsprinzip…………………….... 74 7.2.3.2 Datenerfassung und bezogene Setzung………………………… 75 7.3 Vorversuche an zur Ermittlung der Eigenverformungen der Geräte….... 76 7.3.1 Aluminiumdummys im Standard-Oedometer…………………………... 76 7.3.1.1 Versuchsdurchführung………………………………………… 76 7.3.1.2 Darstellung und Beschreibung der Versuchsergebnisse………. 76 7.3.2 Aluminiumdummys im Oedometer mit kontinuierlicher Laststeigerung. 78 7.3.2.1 Versuchsdurchführung………………………………………... 78 7.3.2.2 Darstellung und Beschreibung der Versuchsergebnisse……… 78 7.3.3 Stahldummys im GDS-Dreiaxialgerät………………………………….. 79 7.3.3.1 Versuchsvorbereitung und Versuchsdurchführung…………….. 80 7.3.3.2 Darstellung und Beschreibung der Versuchsergebnisse…….…. 80 7.3.4 Weitere Einflüsse bei K0-Triaxialversuchen……………………….……81 7.4 Auswertemethoden………………………………………………………….. 82 7.4.1 Steifemodul als Sekantenmodul nach DIN 18135…………………….... 82 7.4.1.1 Standardoedometer nach DIN 18135…………………………... 82 7.4.1.2 Oedometer mit kontinuierlicher Laststeigerung……………...… 83 7.4.1.3 K0-Versuche im GDS-Triaxialgerät……………………………. 84 7.4.2 Kompressions- und Schwellindex nach TERZAGHI …………………... 84 7.4.2.1 Standardoedometer nach DIN 18135……………………….….. 84 7.4.2.2 Oedometer mit kontinuierlicher Laststeigerung………………... 85 7.4.2.3 K0-Tiaxialversuch………………………………………….…… 87 7.4.3 Steifemodul als Tangentenmodul nach JANBU……………………........ 87 7.4.3.1 Standardoedometer nach DIN 18135………………………....... 87 7.4.3.2 Oedometer mit kontinuierlicher Laststeigerung……………...… 89 7.4.3.3 K0-Versuche im GDS-Triaxialgerät……………………………. 91 7.4.4 Steifemodul in Abhängigkeit der Belastungsgeschichte nach RUDERT und FRITSCHE……………………………………………… 92 7.4.4.1 Standardoedometer nach DIN 18135………………………...… 92 7.4.4.2 Oedometer mit kontinuierlicher Laststeigerung……………...… 93 7.4.4.3 K0-Versuche im GDS-Triaxialgerät……………………………. 94 7.5 Probeneinbau und Versuchsdurchführung ungestörter Gipskeuperproben…………………………………………………………... 94 7.5.1 Standardoedometer…………………………………………………….... 94 7.5.2 Oedometer mit kontinuierlicher Laststeigerung……………………….... 95 7.5.3 K0-Versuche im GDS-Triaxialgerät…………………………………..… 95 7.6 Vergleichsversuche an homogenen, normalkonsolidierten Proben…….... 96 7.6.1 Allgemeines……………………………………………………………... 96 7.6.2 Herstellung der aufbereiteten Proben……………………………….…... 96 7.6.2.1 Herstellung der Proben aus Lößlehm…………………………... 96 7.6.2.2 Herstellung der Proben aus Opalinuston nach GÜNTSCHE….. 97 7.6.2.3 Herstellung der Probe aus Sand und Opalinuston nach RUPP…. 98 7.6.3 Kompressionsversuche im Standard-Oedometer……………………….. 99 7.6.4 Kompressionsversuche im Oedometer mit kontinuierlicher Laststeigerung…………………………………………………………... 99 7.6.5 K0-Versuche im GDS-Triaxialgerät…………………………………..… 99 7.7 Darstellung und Diskussion der Versuchsergebnisse……………….…… 99 7.7.1 Einbaukennwerte……………………………………………….……… 100 7.7.1.1 Gipskeuper im Oedometer……………………………………. 100 7.7.1.2 Gipskeuper im K0-Tiaxialversuch…………………………….. 100 7.7.1.3 Vergleichsböden im Oedometer………………………………. 101 7.7.1.4 Vergleichsböden im K0-Tiaxialversuch………………………. 101 7.7.2 Steifemodul als Sekantenmodul nach DIN 18135…………………….. 101 7.7.2.1 Gipskeuper……………………………………………………. 101 7.7.2.2 Vergleichsböden………………………………………………. 106 7.7.3 Kompressions- und Schwellindex nach TERZAGHI………………..... 112 7.7.3.1 Gipskeuper…………………………………………................. 112 7.7.3.2 Vergleichsböden……………………………………………..... 114 7.7.4 Steifemodul als Tangentenmodul nach JANBU………………………. 116 7.7.4.1 Gipskeuper……………………………………………………. 116 7.7.4.2 Vergleichsböden………………………………………………. 118 7.7.5 Steifemodul in Abhängigkeit der Belastung nach RUDERT u. FRITSCHE…………………………………………….… 120 7.7.5.1 Gipskeuper………………………………………………..…... 120 7.7.5.2 Vergleichsböden……………………………………………..... 124 8. FELDVERSUCHE…………………………………………………………...….… 130 8.1 Allgemeines…………………………………………………………………. 130 8.2 Plattendruckversuche……………………………………..……………….. 130 8.2.1 Beschreibung der Versuchseinrichtung………………………………... 130 8.2.2 Versuchsdurchführung, Darstellung und Beschreibung der Ergebnisse…………………………………………………………. 131 8.3 Fundamentprobebelastung……………………………………..……….… 132 8.3.1 Vorüberlegungen……………………………………………………..... 132 8.3.2 Versuchsaufbau und Messgeräte………………………………………. 133 8.3.3 Versuchsdurchführung und Messwerterfassung…………………...….. 136 8.3.4 Störungen und Fehlerquellen………………………………………….. 137 8.3.5 Darstellung und Beschreibung der Versuchsergebnisse…………….… 138 8.4 Bewertung und Vergleich der Versuchsergebnisse……………………… 141 9. BAUWERKSMESSUNGEN………………………………………………………... 145 9.1 Allgemeines……………………………………………………………...…. 145 9.2 Messungen des Spannungs-Verformungsverhaltens von Fundamenten…………………………………………………….……. 145 9.2.1 Beschreibung der Messungen…………………………………………. 145 9.2.2 Störungen und Fehlerquellen………………………………………….. 146 9.2.3 Darstellung der Messergebnisse………………………………...……... 147 9.3 Bewertung und Vergleich der Messergebnisse………………………...... 147 10. NACHRECHNUNG DER FELDVERSUCHE UND DER BAUWERKSMESSUNGEN…...149 10.1 Nachrechnungen mit Standardverfahren nach DIN 4019………...…... 149 10.1.1 Allgemeines………………………………………………………… 149 10.1.2 Berechnungsbeispiele………………………………………………. 150 10.2 Nachrechnungen mit numerischen Verfahren…………………………. 154 10.2.1 Allgemeines………………………………………………………… 154 10.2.2 Rechenprogramm…………………………………………………… 155 10.2.3 Verwendete Stoffmodelle……………………………………........... 155 10.2.4 Berechnungsbeispiele………………………………………………. 156 10.3 Bewertung und Vergleich der eigenen Berechnungsergebnisse……….. 161 11. ZUSAMMENFASSENDER VERGLEICH MIT GESAMTBEWERTUNG UND EMPFEHLUNGEN FÜR DIE BAUPRAXIS ……………………………………...…. 162 11.1 Laborversuche…………………………………………………….…….. 162 11.1.1 Steifemodul als Sekantenmodul nach DIN 18135………………… 162 11.1.2 Steifemodul als Tangentenmodul nach JANBU…………………... 168 11.1.3 Steifemodul in Abhängigkeit der Belastungsgeschichte nach RUDERT und FRITSCHE…………………………………... 171 11.2 Nachrechnungen der Feldversuche und der Setzungsmessungen…….175 11.2.1 Berechnungen mit herkömmlichen Verfahren (DIN 4019)….......... 176 11.2.2 Berechnungen mit numerischen Verfahren mit FEM………..……. 180 11.3 Empfehlungen für die Baupraxis aus den erzielten Erkenntnissen...... 181 12. AUSBLICK UND WEITERER FORSCHUNGSBEDARF…………………………….. 183 13. ZUSAMMENFASSUNG…………………………………………………………... 185 LITERATURVERZEICHNIS………………………………………………………..… 188 VERZEICHNIS DER ANHÄNGE……………………………………………….……... 201

Page generated in 0.0492 seconds