• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Validierung eines Berechnungsverfahrens für Tunnelbauwerke in quellfähigem Gebirge

Wahlen, Roman January 2009 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss.
2

Eindimensionale Kompression überkonsolidierter bindiger Böden am Beispiel des Gipskeupers

Hornig, Ernst-Dieter 10 May 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit einer Methode zur Bestimmung von realistischeren Steifemoduln für eine genauere Setzungsprognose von Flachgründungen in sehr „laborfeindlichen“ veränderlich festen Gesteinen. Die vergleichenden Laboruntersuchungen an teilverwitterten Keuperböden ergaben, dass die Steifemoduln aus den K0-Triaxialversuchen um den Faktor zwei bis drei größer sind als die Moduln aus den Standardoedometerversuchen. Durch, sowohl analytische, wie auch numerische, Nachrechnungen der durchgeführten Feldversuche und der Setzungsmessungen konnte nachgewiesen werden, dass mit Moduln aus K0-Triaxialversuchen deutlich zutreffendere Setzungsprognosen im Keuper möglich sind, als mit Moduln aus den Oedometerversuchen. Es konnte eine deutliche Abhängigkeit der Entwicklung des Steifemoduls von der Belastungsgeschichte, insbesondere im Übergangsbereich von der „echten“ Wiederbelastung zur Erstbelastung, gefunden werden. Für grobe Näherungen, z.B. für Vorbemessungen, werden Abhängigkeiten zwischen Auflastspannungen und Steifemoduln für die Erst- und für die Wiederbelastung angegeben. So lassen sich Moduln für beliebige Spannungen direkt abschätzen. Aus den abgeleiteten Moduluszahlen m des untersuchten Spannungs-Verformungsverhaltens von Böden, können, insbesondere unter Einbeziehung von Daten aus der internationalen Literatur, Korrelationsgleichungen in Abhängigkeit von Anfangsporenzahl bzw. Anfangsporenanteil mit guten bis sehr guten Regressionen angegeben werden. Da der Steifeexponent a nur geringfügig vom Anfangsporenanteil n abhängt und an den in dieser Arbeit untersuchten Böden weder sinnvolle Korrelationen mit R > 0,8 zwischen a und n, noch Abhängigkeiten von a zur Korngröße gefunden wurden, werden für die Steifeexponenten Mittelwerte angegeben.
3

Eindimensionale Kompression überkonsolidierter bindiger Böden am Beispiel des Gipskeupers

Hornig, Ernst-Dieter 21 October 2011 (has links)
Die vorliegende Arbeit beschäftigt sich mit einer Methode zur Bestimmung von realistischeren Steifemoduln für eine genauere Setzungsprognose von Flachgründungen in sehr „laborfeindlichen“ veränderlich festen Gesteinen. Die vergleichenden Laboruntersuchungen an teilverwitterten Keuperböden ergaben, dass die Steifemoduln aus den K0-Triaxialversuchen um den Faktor zwei bis drei größer sind als die Moduln aus den Standardoedometerversuchen. Durch, sowohl analytische, wie auch numerische, Nachrechnungen der durchgeführten Feldversuche und der Setzungsmessungen konnte nachgewiesen werden, dass mit Moduln aus K0-Triaxialversuchen deutlich zutreffendere Setzungsprognosen im Keuper möglich sind, als mit Moduln aus den Oedometerversuchen. Es konnte eine deutliche Abhängigkeit der Entwicklung des Steifemoduls von der Belastungsgeschichte, insbesondere im Übergangsbereich von der „echten“ Wiederbelastung zur Erstbelastung, gefunden werden. Für grobe Näherungen, z.B. für Vorbemessungen, werden Abhängigkeiten zwischen Auflastspannungen und Steifemoduln für die Erst- und für die Wiederbelastung angegeben. So lassen sich Moduln für beliebige Spannungen direkt abschätzen. Aus den abgeleiteten Moduluszahlen m des untersuchten Spannungs-Verformungsverhaltens von Böden, können, insbesondere unter Einbeziehung von Daten aus der internationalen Literatur, Korrelationsgleichungen in Abhängigkeit von Anfangsporenzahl bzw. Anfangsporenanteil mit guten bis sehr guten Regressionen angegeben werden. Da der Steifeexponent a nur geringfügig vom Anfangsporenanteil n abhängt und an den in dieser Arbeit untersuchten Böden weder sinnvolle Korrelationen mit R > 0,8 zwischen a und n, noch Abhängigkeiten von a zur Korngröße gefunden wurden, werden für die Steifeexponenten Mittelwerte angegeben.:INHALTSVERZEICHNIS KURZFASSUNG………………………………………………………………………..VI ABSTRACT…………………………………………………………………..………..VII VERWENDETE BEZEICHNUNGEN, ABKÜRZUNGEN UND INDIZES……………..….. VIII TABELLENVERZEICHNIS…………………………………………………………........ X BILDVERZEICHNIS……………………………………………………………....… XIII 1. EINLEITUNG UND AUFGABENSTELLUNG ………………………………………… 1 2. GLIEDERUNG, AUFBAU UND ZIEL DER ARBEIT ……………………...…………... 3 3. ZUR GEOLOGIE DES GIPSKEUPERS ……………………….…………………….... 8 3.1 Übersicht über die geologische Situation …………….…………………...… 8 3.2 Entstehung und heutiger Zustand des Gipskeupers als Baugrund ……… 11 3.2.1 Einleitung ……………………………………….…………………..… 11 3.2.2 Entstehung der vorbelasteten Böden …………………………………..12 3.2.3 Geologische Vorbelastung……………….….………………………… 13 3.2.4 Bodenkennwerte und bodenmechanische Eigenschaf-ten……….……...14 3.2.5 Heutiger Zustand als Baugrund (Verwitterungsgrad)……………..…... 14 3.2.6 Verwitterung und Entfestigung der Keuperböden…………………….. 18 3.2.7 Entfestigung durch Entlastung………………………………………… 19 3.2.8 Entfestigung durch Verwitterung…………………………………..…. 20 3.2.9 Keupermechanik im Überblick………..………………………………. 21 3.2.9.1 Horizontale Vorspannung und K0-Wert………………..…….. 23 3.2.9.2 Vergleich und Bewertung der heutigen Baugrundsituation….. 24 3.2.10 Abschließende Bewertung zu Kapitel 3.2……………………….……. 25 4. STAND DER FORSCHUNG UND ENTWICKLUNG………………………………….. 26 4.1 Grundlagen der eindimensionalen Kompression………………………….. 26 4.1.1 Spannungen………………………………………………………...….. 26 4.1.2 Verformungen……………………………………………….……..….. 27 4.2 Spannungs-Verformungsbeziehungen der eindimensionalen Kompression…………………………………………………………….…… 29 4.2.1 Allgemeines…………………………………………………………… 29 4.2.2 Steifemodul nach DIN 18135………………………………………..... 30 4.2.3 Kompressions- und Schwellindex nach TERZAGHI……………….… 30 4.2.4 Verdichtungszahl nach OHDE……………………………………...…. 32 4.2.5 Tangentenmodul nach JANBU………………………………………... 33 4.2.6 Steifemodul in Abhängigkeit der Belastungsgeschichte nach RUDERT und FRITSCHE….................................................................. 33 4.2.7 Steifemodul in Abhängigkeit der Belastungsgeschichte nach BIAREZ und HICHER………………………………………………... 35 4.3 Literaturübersicht zur eindimensionalen Kompression verschiedener Böden………………………………………………………… 36 4.3.1 Steifemodul als Sekantenmodul nach DIN 18135 für Keuperböden…. 36 4.3.2 Kompressions- und Schwellindex nach TERZAGHI für alle Böden…. 47 4.3.3 Kompressions- u. Schwellindex für Keuperböden und vgl. Böden…... 51 4.3.4 Tangentenmodul nach JANBU (1963) für alle Böden………………… 52 4.3.5 Tangentenmodul für Keuperböden und für vergleichbare Böden…..… 55 5. UNTERSUCHTE BÖDEN UND PROBENNAHME………………………………….... 59 5.1 Gipskeuper aus Sindelfingen………………………………………………... 59 5.2 Gipskeuper aus Stuttgart-West……………………...…………………...… 60 5.3 Lößlehm……………………………………………………………………… 62 5.4 Filderlehm………………………………………………………………….… 62 5.5 Opalinuston……………………………………………………………..…… 63 5.6 Sand-Opalinuston…………………………………………………………… 63 6. LABORVERSUCHE ZUR BESCHREIBUNG DES GIPSKEUPERS……………………. 64 6.1 Natürliche Wassergehalte, Konsistenzen und Trockendichten…………... 64 6.2 Körnungslinien…………………………………………………………….… 64 6.3 Korndichten……………………………………………………………..…… 66 6.4 Wasseraufnahmevermögen……………………………………………...….. 66 6.5 Quellversuche……………………………………………………………….. 67 6.6 Mineralogie……………………………………………………………...…… 67 6.7 Scherparameter……………………………………………………………… 67 6.8 Vergleich der eigenen Scherparameter mit Werten aus vorliegenden Veröffentlichungen………………………………………………………….. 68 7. LABORVERSUCHE ZUR ERMITTLUNG DES SPANNUNGS-VERFORMUNGSVERHALTENS……………………………………………………. 69 7.1 Einflüsse bei Kompressionsversuchen……………………………….....….. 69 7.2 Versuchmethoden……………………………………………………...…..… 70 7.2.1 Standard-Oedometer nach DIN 18135………………………….…….… 70 7.2.1.1 Gerätebeschreibung und Versuchsprinzip…………………...…. 70 7.2.1.2 Datenerfassung und bezogene Setzung………………………… 71 7.2.2 Oedometer mit kontinuierlicher Laststeigerung………………………... 71 7.2.2.1 Gerätebeschreibung und Versuchsprinzip…………………….... 72 7.2.2.2 Datenerfassung und bezogene Setzung………………………… 73 7.2.3 K0-Triaxialversuche im computergesteuerten Versuchsstand GDS…….. 73 7.2.3.1 Gerätebeschreibung und Versuchsprinzip…………………….... 74 7.2.3.2 Datenerfassung und bezogene Setzung………………………… 75 7.3 Vorversuche an zur Ermittlung der Eigenverformungen der Geräte….... 76 7.3.1 Aluminiumdummys im Standard-Oedometer…………………………... 76 7.3.1.1 Versuchsdurchführung………………………………………… 76 7.3.1.2 Darstellung und Beschreibung der Versuchsergebnisse………. 76 7.3.2 Aluminiumdummys im Oedometer mit kontinuierlicher Laststeigerung. 78 7.3.2.1 Versuchsdurchführung………………………………………... 78 7.3.2.2 Darstellung und Beschreibung der Versuchsergebnisse……… 78 7.3.3 Stahldummys im GDS-Dreiaxialgerät………………………………….. 79 7.3.3.1 Versuchsvorbereitung und Versuchsdurchführung…………….. 80 7.3.3.2 Darstellung und Beschreibung der Versuchsergebnisse…….…. 80 7.3.4 Weitere Einflüsse bei K0-Triaxialversuchen……………………….……81 7.4 Auswertemethoden………………………………………………………….. 82 7.4.1 Steifemodul als Sekantenmodul nach DIN 18135…………………….... 82 7.4.1.1 Standardoedometer nach DIN 18135…………………………... 82 7.4.1.2 Oedometer mit kontinuierlicher Laststeigerung……………...… 83 7.4.1.3 K0-Versuche im GDS-Triaxialgerät……………………………. 84 7.4.2 Kompressions- und Schwellindex nach TERZAGHI …………………... 84 7.4.2.1 Standardoedometer nach DIN 18135……………………….….. 84 7.4.2.2 Oedometer mit kontinuierlicher Laststeigerung………………... 85 7.4.2.3 K0-Tiaxialversuch………………………………………….…… 87 7.4.3 Steifemodul als Tangentenmodul nach JANBU……………………........ 87 7.4.3.1 Standardoedometer nach DIN 18135………………………....... 87 7.4.3.2 Oedometer mit kontinuierlicher Laststeigerung……………...… 89 7.4.3.3 K0-Versuche im GDS-Triaxialgerät……………………………. 91 7.4.4 Steifemodul in Abhängigkeit der Belastungsgeschichte nach RUDERT und FRITSCHE……………………………………………… 92 7.4.4.1 Standardoedometer nach DIN 18135………………………...… 92 7.4.4.2 Oedometer mit kontinuierlicher Laststeigerung……………...… 93 7.4.4.3 K0-Versuche im GDS-Triaxialgerät……………………………. 94 7.5 Probeneinbau und Versuchsdurchführung ungestörter Gipskeuperproben…………………………………………………………... 94 7.5.1 Standardoedometer…………………………………………………….... 94 7.5.2 Oedometer mit kontinuierlicher Laststeigerung……………………….... 95 7.5.3 K0-Versuche im GDS-Triaxialgerät…………………………………..… 95 7.6 Vergleichsversuche an homogenen, normalkonsolidierten Proben…….... 96 7.6.1 Allgemeines……………………………………………………………... 96 7.6.2 Herstellung der aufbereiteten Proben……………………………….…... 96 7.6.2.1 Herstellung der Proben aus Lößlehm…………………………... 96 7.6.2.2 Herstellung der Proben aus Opalinuston nach GÜNTSCHE….. 97 7.6.2.3 Herstellung der Probe aus Sand und Opalinuston nach RUPP…. 98 7.6.3 Kompressionsversuche im Standard-Oedometer……………………….. 99 7.6.4 Kompressionsversuche im Oedometer mit kontinuierlicher Laststeigerung…………………………………………………………... 99 7.6.5 K0-Versuche im GDS-Triaxialgerät…………………………………..… 99 7.7 Darstellung und Diskussion der Versuchsergebnisse……………….…… 99 7.7.1 Einbaukennwerte……………………………………………….……… 100 7.7.1.1 Gipskeuper im Oedometer……………………………………. 100 7.7.1.2 Gipskeuper im K0-Tiaxialversuch…………………………….. 100 7.7.1.3 Vergleichsböden im Oedometer………………………………. 101 7.7.1.4 Vergleichsböden im K0-Tiaxialversuch………………………. 101 7.7.2 Steifemodul als Sekantenmodul nach DIN 18135…………………….. 101 7.7.2.1 Gipskeuper……………………………………………………. 101 7.7.2.2 Vergleichsböden………………………………………………. 106 7.7.3 Kompressions- und Schwellindex nach TERZAGHI………………..... 112 7.7.3.1 Gipskeuper…………………………………………................. 112 7.7.3.2 Vergleichsböden……………………………………………..... 114 7.7.4 Steifemodul als Tangentenmodul nach JANBU………………………. 116 7.7.4.1 Gipskeuper……………………………………………………. 116 7.7.4.2 Vergleichsböden………………………………………………. 118 7.7.5 Steifemodul in Abhängigkeit der Belastung nach RUDERT u. FRITSCHE…………………………………………….… 120 7.7.5.1 Gipskeuper………………………………………………..…... 120 7.7.5.2 Vergleichsböden……………………………………………..... 124 8. FELDVERSUCHE…………………………………………………………...….… 130 8.1 Allgemeines…………………………………………………………………. 130 8.2 Plattendruckversuche……………………………………..……………….. 130 8.2.1 Beschreibung der Versuchseinrichtung………………………………... 130 8.2.2 Versuchsdurchführung, Darstellung und Beschreibung der Ergebnisse…………………………………………………………. 131 8.3 Fundamentprobebelastung……………………………………..……….… 132 8.3.1 Vorüberlegungen……………………………………………………..... 132 8.3.2 Versuchsaufbau und Messgeräte………………………………………. 133 8.3.3 Versuchsdurchführung und Messwerterfassung…………………...….. 136 8.3.4 Störungen und Fehlerquellen………………………………………….. 137 8.3.5 Darstellung und Beschreibung der Versuchsergebnisse…………….… 138 8.4 Bewertung und Vergleich der Versuchsergebnisse……………………… 141 9. BAUWERKSMESSUNGEN………………………………………………………... 145 9.1 Allgemeines……………………………………………………………...…. 145 9.2 Messungen des Spannungs-Verformungsverhaltens von Fundamenten…………………………………………………….……. 145 9.2.1 Beschreibung der Messungen…………………………………………. 145 9.2.2 Störungen und Fehlerquellen………………………………………….. 146 9.2.3 Darstellung der Messergebnisse………………………………...……... 147 9.3 Bewertung und Vergleich der Messergebnisse………………………...... 147 10. NACHRECHNUNG DER FELDVERSUCHE UND DER BAUWERKSMESSUNGEN…...149 10.1 Nachrechnungen mit Standardverfahren nach DIN 4019………...…... 149 10.1.1 Allgemeines………………………………………………………… 149 10.1.2 Berechnungsbeispiele………………………………………………. 150 10.2 Nachrechnungen mit numerischen Verfahren…………………………. 154 10.2.1 Allgemeines………………………………………………………… 154 10.2.2 Rechenprogramm…………………………………………………… 155 10.2.3 Verwendete Stoffmodelle……………………………………........... 155 10.2.4 Berechnungsbeispiele………………………………………………. 156 10.3 Bewertung und Vergleich der eigenen Berechnungsergebnisse……….. 161 11. ZUSAMMENFASSENDER VERGLEICH MIT GESAMTBEWERTUNG UND EMPFEHLUNGEN FÜR DIE BAUPRAXIS ……………………………………...…. 162 11.1 Laborversuche…………………………………………………….…….. 162 11.1.1 Steifemodul als Sekantenmodul nach DIN 18135………………… 162 11.1.2 Steifemodul als Tangentenmodul nach JANBU…………………... 168 11.1.3 Steifemodul in Abhängigkeit der Belastungsgeschichte nach RUDERT und FRITSCHE…………………………………... 171 11.2 Nachrechnungen der Feldversuche und der Setzungsmessungen…….175 11.2.1 Berechnungen mit herkömmlichen Verfahren (DIN 4019)….......... 176 11.2.2 Berechnungen mit numerischen Verfahren mit FEM………..……. 180 11.3 Empfehlungen für die Baupraxis aus den erzielten Erkenntnissen...... 181 12. AUSBLICK UND WEITERER FORSCHUNGSBEDARF…………………………….. 183 13. ZUSAMMENFASSUNG…………………………………………………………... 185 LITERATURVERZEICHNIS………………………………………………………..… 188 VERZEICHNIS DER ANHÄNGE……………………………………………….……... 201
4

Interactions roches/saumures en contexte d'abandon d'exploitations souterraines de sel / Rocks/brines interactions in abandonned underground salt working

Boidin, Elie 06 February 2007 (has links)
La problématique de cette thèse est l’identification des phénomènes physico-chimiques se produisant entre les roches encaissantes du gisement de sel gemme de Lorraine et des saumures, puis l’étude de leurs effets sur le comportement mécanique. Une démarche multi-échelle a été entreprise : du minéral à l’échelle d’une exploitation en passant par celle des essais mécaniques. La confrontation de la géologie locale avec la géométrie des cavités de dissolution de sel (logiciel GOCAD) au travers de ces roches encaissantes rend compte d’un délitage relativement rapide lorsque les argilites sont au contact d’une saumure de cavité. A l’inverse, l’anhydrite et la dolomie peuvent constituer le toit de cavité pendant plusieurs années, avant de se rompre. Suite à une caractérisation minéralogique, et microtexturale des roches encaissantes (Marnes irisées inférieures et moyennes), une expérimentation de type batch a été mise en œuvre afin de comprendre ces différences: les faciès lithologiques qualifiés de majeurs ont été immergés dans des saumures pendant plus d’un an. Des analyses chimiques et microscopiques ont permis de suivre les modifications minéralogiques et microtexturales. Au contact de saumures saturées en chlorure de sodium, les faciès argileux se délitent en raison de l’hydratation en gypse du minéral anhydrite. Au niveau de l’anhydrite massive, cette hydratation n’affecte qu’une frange superficielle des échantillons, en raison d’une porosité connectée quasi-nulle. En présence d’une saumure de cavité, l’hydratation est promue par la présence de potassium et de strontium en solution. Ces résultats permettent d’expliquer qualitativement la dilatation voire la rupture des éprouvettes d’argilite lors d’essais de fluage en saumures. Le comportement en flexion de l’anhydrite massive ne semble pas être affecté par la présence de saumure, en raison d’une porosité trop faible pour permettre l’accès de la saumure au site réactionnel que sont les cristaux d’anhydrite / The aim of this study is the understanding of the physico-chemical interactions between saturated brine and the rocks (Marnes Irisées inférieures) enclosing the underground salt workings in Lorraine (eastern France), and also the study of their effect on the mechanical behaviour. A multi-scale study was undertaken, from the mineral scale to the one of a salt working. Whereas anhydrite-rich argillites flake quickly with the presence of saturated brine at the border of solutions cavities, the dolomudstone and massive anhydrite don’t and can constitute the top of cavities for several years. In order to explain this difference, these three lithologies were analysed in terms of mineralogy, micro-texture and porous media. Then, samples of argillites and massive anhydrite were immersed in saturated brines for more than one year. Chemical and microscopic analysis testified the hydration of anhydrite crystals into gypsum. This transformation occurs in a superficial way on massive anhydrite; to the contrary, it is located inside the anhydrite-rich argilites. As this transformation induces a volume increasing of 63%, the anhydrite crystals swell. In saturated brine, the water activity is low enough to prevent the swelling of clays such as smectites. Thus, anhydrite swelling might be the responsible of the argillites splitting in a saturated brine environment. The superficial anhydrite hydration on massive anhydrite can be explained by the low values of connected porosity (less than 1%) for this lithology. This results can explain, in a qualitative way, the dilatant behaviour of argilites samples during creep tests with brine. The bending behaviour of massive anhydrite don’t seem to be affected by the presence of brine for one year or less, probably because of the too low porosity of this lithology
5

Stratigraphie, Fazies und geothermisches Potenzial von fluvio-deltaischen Ablagerungsräumen der Oberen Trias und des Unteren Jura im östlichen Teil des Mitteleuropäischen Beckens

Barth, Gregor 09 December 2019 (has links)
Die vorliegende, aus insgesamt vier Einzelveröfffentlichungen bestehende Dissertation soll den Kenntnisstand über fazielle und biostratigraphische Entwicklungen und Gliederungsmöglichkeiten in der höheren Trias und dem Unteren Jura im östlichen Teil des Mitteleuropäischen Beckens (insbesondere des Norddeutschen Beckens) erweitern, und die bislang verfügbaren Daten in einem Kontext wiedergeben. Als wesentliche Punkte der Arbeit sollen genannt werden: 1. Verbesserung des stratigraphischen Gerüsts: Basierend auf hochauflösender Palynostratigraphie (in der Exter-Formation, Rhätkeuper) und der biostratigraphisch kontrollierten Definition von sequenzstratigraphischen Flutungs- und Regressionsflächen (im Unteren Jura) konnten konkrete Zeitscheiben ausgewiesen werden, auf deren Grundlage Untergrund-Fazieskarten erstellt worden sind. Durch Korrelation gleichalter Ablagerungen kann u. a. der Trias-Jura-Übergang im Norddeutschen Becken besser identifiziert werden. 2. Sedimentologische und biofazielle Untersuchungen an gekernten Bohrungen und Übertageaufschlüssen ermöglichen die Rekonstruktion von hochauflösenden Untergrund-Fazieskarten innerhalb der konkretisierten Zeitscheiben, die Ablagerungsmodelle und biofazielle Zonierungen (Rhätkeuper bis Toarc) wiedergeben. Diese Ergebnisse können mittels Korrelation geophysikalischer Bohrlochmessungen auf Profile übertragen werden, von denen keine Festgesteinsprobe (mehr) vorliegt. Zusätzlich wird ein Vergleich mit rezenten Ablagerungssystemen möglich. 3. Bezugnahme der Ergebnisse auf die angewandte Forschung, insbesondere die Erkundung des geologischen Untergrundes und die Abschätzung der Reservoirqualität (mithilfe von geohydraulischen Messwerten [Porosität, Permeabilität] sowie hochauflösender Reservoirqualitätskarten, die aus den Untergrund-Fazieskarten abgeleitet worden sind). In Vorbereitung geothermischer Projekte ermöglichen diese Karten eine verbesserte standortbezogene Reservoirprognose, als dies bisher im östlichen Norddeutschen Becken möglich ist.

Page generated in 0.032 seconds