• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The client spectrum of Get3, an evolutionarily conserved chaperone of membrane proteins

Farkas, Ákos 18 November 2021 (has links)
No description available.
2

Effects of the components of the Get pathway on prion propagation

Bariar, Bhawana 15 November 2007 (has links)
Yeast prions e.g. [PSI+], [PIN+] and [URE3] are similar to mammalian amyloids that cause neurodegenerative diseases. [PSI+] is the aggregated self-perpetuating (prion) isoform of Sup35, a translation termination factor. The molecular chaperone Hsp104 plays a crucial role in the maintenance and propagation of [PSI+]. Deletion of the GET2 gene has been shown to cause a [PSI+] curing defect by excess Hsp104 and [PSI+] instability on synthetic medium (S. Muller, J. Patterson and Y. Chernoff, unpublished data; and J. Patterson Honors Thesis). Get2 is a membrane protein working in a complex with Get1 and Get3 proteins. This complex, called GET (Golgi-to-ER Traffic), is known to retrieve resident ER proteins from Golgi. In this particular study we provide further evidence for the connection between the GET pathway and yeast prions. The get2 deletion also leads to a detectable loss of [PIN+] prion on synthetic medium. The role of the other two members of the Get complex in prion propagation is also explored. The levels and the activity of Hsp104 in the get2 mutants is analyzed. The size of [PSI+] aggregates in the get2Δ strain is compared to that found in wild type. Finally, other possible mechanisms for the effect of get2 on prion maintenance and propagation are addressed.

Page generated in 0.0207 seconds