• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 32
  • 26
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 112
  • 29
  • 23
  • 17
  • 17
  • 17
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Gaz de bosons et de fermions condensés : phases de Fulde-Ferrell-Larkin-Ovchinnikov et quasicondensats

Mora, Christophe 01 March 2004 (has links) (PDF)
La première partie de cette thèse concerne les phases inhomogènes<br />FFLO. Celles-ci peuvent apparaître dans les supraconducteurs<br />ou les gaz d'atomes froids fermioniques en présence d'une différence<br />homogène de potentiels chimiques entre les deux états de spin.<br />Nous regardons la compétition<br />entre les différentes phases FFLO près de la transition.<br />A 2D, nous utilisons une approche de type Ginzburg-Landau <br />pour prédire une cascade de transitions entre des phases inhomogènes<br />de plus en plus complexes.<br />A 3D ou la transition FFLO est du premier ordre, <br />nous présentons une méthode numérique <br />de résolution des équations quasiclassiques d'Eilenberger <br />basée sur un développement de Fourier. <br />Nous déterminons ainsi les phases inhomogènes de plus basse énergie.<br /><br />Dans la seconde partie, nous étendons la théorie perturbative<br />de Bogoliubov aux quasicondensats dans une représentation densité-phase.<br />Nous obtenons des prédictions pour différentes observables.
132

Méthodes de couplage pour des équations stochastiques de type Navier-Stokes et Schrödinger

Odasso, Cyril 12 December 2005 (has links) (PDF)
Nous nous intéresserons d'abord aux équations stochastiques de Navier-Stokes bidimensionnelles (NS), de Ginzburg-Landau Complexes (CGL) et de Schrödinger non-linéaires (NLS) munies d'un bruit blanc en temps et régulier pour la variable spatiale. En nous appuyant sur des méthodes de couplages, nous établirons le caractère exponentiellement (resp polynomialement) mélangeant de NS et CGL (resp NLS) lorseque le bruit recouvre un nombre suffisant de bas modes. Deux des innovations majeures de ces résultats sont le fait que l'on s'autorise à traiter des équations non-dissipatives telles que NLS et que l'on considère des bruits non additifs.<br />Dans un deuxième temps, nous considérerons les équations de Navier-Stokes stochastiques tridimensionnelles (NS3D). Nous établirons la régularité Hp et Gevrey des solutions stationnaires de NS3D et nous en déduirons des informations sur l'échelle de dissipation de Kolmogorov (K41). Puis, nous établirons le caractère exponentiellement mélangeant des solutions de NS3D lorsque le bruit est à la fois suffisament régulier et non-dégénéré.
133

Comportement critique d'oscillateurs couples ; Groupe de renormalisation et classe d'universalite

Risler, Thomas 22 September 2003 (has links) (PDF)
Les etonnantes performances de l'organe auditif des mammiferes sont<br />notamment dues aux proprietes generiques des oscillateurs critiques<br />couples qui constituent le systeme. Cette these presente une etude<br />des proprietes critiques generiques des<br />systemes spatialement etendus d'oscillateurs stochastiques couples,<br />operant dans le voisinage d'une instabilite oscillante homogene ou<br />bifurcation de Hopf. Dans ce contexte, cette bifurcation constitue un<br />point critique dynamique hors equilibre, exhibant des proprietes<br />universelles qui sont canoniquement decrites par l'equation<br />Ginzburg-Landau complexe en presence de bruit. La formulation du probleme<br />en termes d'une theorie statistique dynamique des champs non hamiltonienne<br />nous permet d'etudier le comportement critique du systeme a l'aide des<br />techniques de la renormalisation dynamique perturbative.<br /><br />Dans un cas particulier, une analogie exacte avec le modele O(2) dynamique<br />nous permet d'ecrire une relation generalisee de la relation<br />fluctuation-dissipation et de deduire le comportement critique du systeme<br />directement a partir des etudes anterieures. Dans le cas general,<br />nous etablissons la structure du groupe de renormalisation de la theorie<br />dans un espace de dimension<br />4-epsilon, en lui adaptant les schemas de renormalisation de Wilson et<br />de Callan-Symanzik. La presence d'une frequence caracteristique dans le<br />systeme - la frequence des oscillations spontanees a la transition -<br />impose d'associer aux transformations de renormalisation un changement de<br />referentiel oscillant dependant de l'echelle. Nous effectuons le<br />calcul a l'ordre de deux boucles en theorie des perturbations, et montrons<br />que la classe d'universalite du modele est decrite par le point fixe du<br />modele dynamique dissipatif<br />O(2) dans un referentiel oscillant bien choisi. Ainsi, bien que la<br />dynamique soit hautement hors equilibre et brise les relations de bilan<br />detaille, une relation fluctuation-dissipation generalisee est<br />asymptotiquement restauree a la transition. Cette relation prevoit<br />l'existence de fortes contraintes sur les principales observables<br />experimentales : la fonction de correlation a deux points et la fonction<br />de reponse lineaire a un stimulus sinusoidal.

Page generated in 0.033 seconds