• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vortex motion in type II superconductors

Richardson, Giles William January 1995 (has links)
No description available.
2

Superconductivity problems with multiple Ginzburg-Landau order parameters

Geyer, Jani 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Two problems in the field of materials-based condensed matter physics, specifically in the field of superconductivity, are studied theoretically. In both problems, where each is of current exper- imental interest, an extension of Ginzburg-Landau theory is used to describe a physical system, with focus on the energy associated to the interface(s) occurring in the respective systems. The first physical system under consideration is that of a two-band superconductor. Using Ginzburg-Landau theory for two-band superconductors, the interface energy ¾s between normal and superconducting states coexisting at the thermodynamic critical magnetic field is determined. From the theoretical and numerical analysis of the interface energy, it is found that close to the transition temperature, where the Ginzburg-Landau theory is applicable, the two-band problem maps onto an effective single band problem. This finding puts into question the possibility of intermediate, so called type-1.5 superconductivity, in the regime where the Ginzburg-Landau theory applies. The second physical system is that of a system with competing superconductivity and anti- ferromagnetism. From Ginzburg-Landau theory for such competing systems in a thermodynamic critical magnetic field, it is shown that two possible interfaces can occur: an interface between a pure anti-ferromagnetic state and a pure superconducting state; and an interface between a state with coexisting superconductivity and anti-ferromagnetism and a pure anti-ferromagnetic state. The energy associated to both these interfaces is analysed theoretically and numerically from which the boundary between type-I and type-II superconductivity is obtained for certain specific cases. / AFRIKAANSE OPSOMMING: Twee probleme in die veld van materiaal-gebaseerde gekondenseerde materie fisika, spesifiek in die veld van supergeleiding, word teoreties bestudeer. In beide probleme, albei tans van eksper- imentele belang, word ’n fisiese sisteem beskryf deur ’n uitbreiding van enkel-band Ginzburg- Landau teorie, met fokus op die energie geassosieer met die koppelvlak(ke) wat in die onderskeie sisteme aangetref word. Die eerste fisiese sisteem wat beskou word is die van ’n twee-band supergeleier. Deur van Ginzburg-Landau teorie vir twee-band supergeleiers gebruik te maak, word die koppelvlak energie ¾s tussen die gelyktydig bestaande normaal- en supergeleidende toestand in die termodinamiese kritieke magneetveld bepaal. Deur beide teoretiese en numeriese analieses word bepaal dat na aan die oorgangstemperatuur, waar Ginzburg-Landau teorie geldig is, die twee-band probleem op ’n effektiewe een-band probleem afbeeld. Hierdie bevinding bevraagteken dus die moontlikheid van onkonvensionele, of sogenaamde tipe-1.5 supergeleiding, vir gevalle waar Ginzburg-Landau teorie geldig is. Die tweede fisiese siteem wat beskou word is ’n sisteem met kompeterende supergeleiding en anti-ferromagnetisme. Met behulp van Ginzburg-Landau teorie vir sulke sisteme in ’n termod- inamiese kritiese magneetveld word gewys dat daar twee moontlike koppelvlakke kan ontstaan: ’n koppelvlak tussen ’n uitsluitlik anti-ferromagnetiese toestand en ’n uitsluitlik supergeleidende toestand; sowel as ’n koppelvlak tussen ’n uitsluitlik anti-ferromagnetiese toestand en ’n toes- tand van beide supergeleiding en anti-ferromagnetisme. Die energie geassosieer met beide hierdie koppelvlakke word teoreties en numeries geanaliseer wat lei tot ’n beskrywing van die grenslyn tussen tipe-I en tipe-II supergeleiding in sekere spesifieke gevalle.
3

Phase structure and critical properties of an abelian gauge theory / Fasestruktur og kritiske eigenskapar til ein abelsk gauge-teori

Mo, Sjur January 2002 (has links)
<p>Chapter 1 to 4 give a short introduction to superconductivity, microscopic theory, phase transitions, and Monte-Carlo simulations. Chapter 2 is about Cooper pairing in different settings, but I also give a short introduction to the Hofstadter problem of lattice fermions on a square lattice in a perpendicular magnetic field. The purpose is to clarify some points in Paper-I. Chapter 3 is about phase transitions, and introduces the important concepts of spontaneous symmetry breaking, scaling, and renormalization. In the last section I stress some of the main differences between first order and second order phase transitions. Chapter 4 starts with a short elementary introduction to Monte-Carlo simulations and proceeds with the important, but somewhat more advanced topic of reweighting.</p><p>Chapter 5 to 7 are more closely related to the specific projects I have worked on, and are meant to illuminate and clarify some aspects in Paper-II and Paper-III. Chapter 5 introduce the Ginzburg-Landau model in various parametrizations, present some perturbative (mean-field) results, and introduce the concept of topological defects (vortices) and duality.</p><p>Chapter 6 is closely related to Paper-II and introduce the concept of fractal dimension and the relation between the vortex excitations of the original theory and the dual field theory. Chapter 7 is closely related to Paper-III where we studied the order of the metal to superconductor phase transition. To do this we had to do infinite volume and continuum limit extrapolations. We also had to consider ultraviolet renormalization since the Ginzburg-Landau theory is a continuum field theory with no inherent short scale cut-off. To reduce auto-correlation times we added several improvements to the standard Metropolis algorithm in the Monte-Carlo simulations, the most important being an overrelaxation algorithm for the scalar field and a global update of the scalar amplitude.</p>
4

Phase structure and critical properties of an abelian gauge theory / Fasestruktur og kritiske eigenskapar til ein abelsk gauge-teori

Mo, Sjur January 2002 (has links)
Chapter 1 to 4 give a short introduction to superconductivity, microscopic theory, phase transitions, and Monte-Carlo simulations. Chapter 2 is about Cooper pairing in different settings, but I also give a short introduction to the Hofstadter problem of lattice fermions on a square lattice in a perpendicular magnetic field. The purpose is to clarify some points in Paper-I. Chapter 3 is about phase transitions, and introduces the important concepts of spontaneous symmetry breaking, scaling, and renormalization. In the last section I stress some of the main differences between first order and second order phase transitions. Chapter 4 starts with a short elementary introduction to Monte-Carlo simulations and proceeds with the important, but somewhat more advanced topic of reweighting. Chapter 5 to 7 are more closely related to the specific projects I have worked on, and are meant to illuminate and clarify some aspects in Paper-II and Paper-III. Chapter 5 introduce the Ginzburg-Landau model in various parametrizations, present some perturbative (mean-field) results, and introduce the concept of topological defects (vortices) and duality. Chapter 6 is closely related to Paper-II and introduce the concept of fractal dimension and the relation between the vortex excitations of the original theory and the dual field theory. Chapter 7 is closely related to Paper-III where we studied the order of the metal to superconductor phase transition. To do this we had to do infinite volume and continuum limit extrapolations. We also had to consider ultraviolet renormalization since the Ginzburg-Landau theory is a continuum field theory with no inherent short scale cut-off. To reduce auto-correlation times we added several improvements to the standard Metropolis algorithm in the Monte-Carlo simulations, the most important being an overrelaxation algorithm for the scalar field and a global update of the scalar amplitude.
5

Ginzbutrg-Landau theory with hidden order parameter applied to interface superconductivity / TEORIA DE GINZBURG-LANDAU COM PARÃMETRO DE ORDEM ESCONDIDO APLICADA AO ESTUDO DA SUPERCONDUTIVIDADE DE INTERFACE

VICTOR NOCRATO MOURA 21 February 2017 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / In recent years, several experiments have been reported in which interface superconductivity was observed in heterostructures of different materials, inclunding non-superconductors. The origin of this superconductivity has not yet been elucidated and there is no well-established theory to explain this phenomenon. In 2015 a model based on the Ginzburg-Landau theory was proposed that would explain the interface superconductivity phenomenon assuming a system with two order parameters. It has been proposed that the order parameter characterizing the bulk material with a defective or doped layer permits the formation of a second parameter which competes with the former and prevails over it in the vicinity of the interface. The superconductivity at the interface is then explained by the growth of this second order parameter only in this region, remaining still ``hidden" inside the bulk. The model was applied to a one-dimensional system with an interface, which presented a surprising result: the ``hidden" superconductivity appers in quantized critical temperatures, this allowing the existence of several eigenstates of the system, with different critical temperatures. In this dissertation, we use this model and investigate the unfolding of hidden superconductivity and its quantized temperatures. We observe that the interfaces resemble one-dimensional quantum wells, with the critical temperature playing the role of the energy in the quantum case. Following this idea we use numerical methods to solve the Ginzburg-Landau equations for a system with an arbitrary number of parallel interfaces. Our results show that in this case, the critical temperatures are quantized and degenerate when the interfaces are very separated, but it has its degeneracy broken when we approach the interfaces, as it happens in a lattice of square wells. We then proposed a tight-binding model to estimate critical temperatures on parallel interfaces and verified the validity of this approximation through the numerical solution of the complete problem. We also analyze the vortex states for a square two-dimensional defect, verifying the possibility of creating or destroying vortices in the region of `` hidden" superconductivity through an external magnetic field. / Nos Ãltimos anos foram reportados diversos experimentos em que a supercondutividade de interface foi observada em heteroestruturas de diferentes materiais, inclusive em nÃo-supercondutores extit{a priori}. A origem dessa supercondutividade ainda nÃo foi elucidada e nÃo existe uma teoria bem estabelecida para explicar esse fenÃmeno. Em 2015 foi proposto um modelo com base na teoria de Ginzburg-Landau que explicaria o fenÃmeno de supercondutividade de interface assumindo um sistema com dois parÃmetros de ordem. Foi proposto que o parÃmetro de ordem que caracteriza o material extit{bulk} com uma camada defeituosa, ou dopada, permite a formaÃÃo de um segundo parÃmetro que compete com o primeiro e prevalece sobre ele nas proximidades da interface. A supercondutividade na interface à entÃo explicada pelo crescimento deste segundo parÃmetro de ordem apenas nesta regiÃo, permancecendo ainda ``escondido" dentro do extit{bulk}. O modelo foi aplicado para um sistema unidimensional com uma interface, apresentando um resultado surpreendente: a supercondutividade escondida aparece em temperaturas crÃticas quantizadas, podendo entÃo existir vÃrios autoestados do sistema, com diferentes temperaturas crÃticas. Nessa dissertaÃÃo utilizamos esse modelo e investigamos os desdobramentos da supercondutividade escondida e suas temperaturas quantizadas. Percebemos que as interfaces assemelham-se com poÃos quÃnticos unidimensionais, com a temperatura crÃtica fazendo o anÃlogo ao da energia no caso quÃntico. Seguindo essa ideia utilizamos mÃtodos numÃricos para resolver as equaÃÃes de Ginzburg-Landau para um sistema com um nÃmero arbitrÃrio de interface paralelas. Nossos resultados mostram que neste caso, as temperaturas crÃticas, alÃm de quantizadas, sÃo degeneradas quando as interfaces estÃo muito separadas, mas tem essa degenerescÃncia quebrada quando aproximamos as interfaces, como ocorre em uma rede de poÃos quadrados. Propusemos entÃo um modelo tipo extit{tight-binding} para estimar temperaturas crÃticas em interfaces paralelas e verificamos a validade dessa aproximaÃÃo atravÃs da soluÃÃo numÃrica do problema completo. Analisamos tambÃm os estados de vÃrtices para um defeito bidimensional quadrado, verificando a possibilidade de se criar ou destruir vÃrtices na regiÃo de supercondutividade escondida atravÃs de um campo magnÃtico externo.
6

Aspects of thermal field theory with applications to superconductivity

Metikas, Georgios January 1999 (has links)
No description available.
7

Numerical studies of superfluids and superconductors

Winiecki, Thomas January 2001 (has links)
In this thesis we demonstrate the power of the Gross-Pitaevskii and the time-dependent Ginzburg-Landau equations by numerically solving them for various fundamental problems related to superfluidity and superconductivity. We start by studying the motion of a massive object through a quantum fluid modelled by the Gross-Pitaevskii equation. Below a critical velocity, the object does not exchange momentum or energy with the fluid. This is a manifestation of its superfluid nature. We discuss the effect of applying a constant force to the object and show that for small forces a vortex ring is created to which the object becomes attached. For a larger force the object detaches from the vortex ring and we observe periodic shedding of rings. All energy transfered to the system is contained within the vortex rings and the drag force on the object is due to the recoil of the vortex emission. If we exceed the speed of sound, there is an additional contribution to the drag from sound emission. To make a link to superconductivity, we then discuss vortex states in a rotating system. In the ground state, regular arrays of vortices are observed which, for systems containing many vortices, mimic solid-body rotation. In the second part of the thesis, we initially review solutions to the Ginzburg-Landau equations in an applied magnetic field. For superconducting disks we observe vortex arrays similar to those in rotating superfluids. Finally, we study an electrical current flow along a superconducting wire subject to an external magnetic field. We observe the motion of flux lines, and hence dissipation, due to the Lorentz force. We measure the V – I curve which is analogous to the drag force in a superfluid. With the introduction of impurities, flux lines become pinned which gives rise to an increased critical current.
8

Superconductivity at its Limit: Simulating Superconductor Dynamics Near the Superconducting Superheating Field in Eilenberger and Ginzburg-Landau Theory

Pack, Alden Roy 13 April 2020 (has links)
We computationally explore the dynamics of superconductivity near the superheating field in two ways. First, we use a finite element method to solve the time-dependent Ginzburg-Landau equations of superconductivity. We present a novel way to evaluate the superheating field Hsh and the critical mode that leads to vortex nucleation using saddle-node bifurcation theory. We simulate how surface roughness, grain boundaries, and islands of deficient Sn change those results in 2 and 3 spatial dimensions. We study how AC magnetic fields and heat waves impact vortex movement. Second, we use automatic differentiation to abstract away the details of deriving the equations of motion and stability for Ginzburg-Landau and Eilenberger theory. We present calculations of Hsh and the critical wavenumber using linear stability analysis.
9

Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteurs

Stenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
10

Défauts de vorticité dans un supraconducteur en présence d’impuretés / Vorticity defects in a superconductor with impurities

Dos Santos, Mickaël 09 December 2010 (has links)
Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage / This thesis is devoted to the mathematical study of some models suggested by the theory of the superconductivity. More specifically, we consider the simplified model of Ginzburg-Landau (without magnetic field) in presence of a Dirichlet or a degree condition. In the first part we treat the existence problem of local minimizers in a multiply connected domain of the plan with prescribed degrees conditions. In the second part, we discuss the effect of a pinning term in the two-dimensional Ginzburg-Landau functional. This part is divided in three chapters. We first consider the situation of a pinning term (depending on the Ginzburg-Landau parameter) which is a simple function and takes a value different to 1 only in a fixed number of subdomains (also called inclusions) whose size tends to zero. We prove that, considering a Dirichlet condition with a non zero degree, the vorticity is quantized and localized inside the inclusions. In the second chapter, we consider the situation of a pinning term without specific structure. We imposed a Dirichlet boundary condition with a null degree. In the last chapter of the second part, we deal with the case of a simple and uniformly distributed pinning term. We impose a Dirichlet boundary condition with a non zero degree. The last part deals with the effect of a simple pinning term (independent of the Ginzburg-Landau parameter) in the three-dimensional Ginzburg-Landau functional. The preliminary results we present allow to understand how the vorticity lines are bent under the effect of the pinning term

Page generated in 0.0916 seconds