• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteurs

Stenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
2

Développement d'outils d'interprétation de données géophysiques / Tools development for geophysical data interpretation

Foudil-Bey, Nacim 27 June 2012 (has links)
Les méthodes géophysiques aéroportées sont très utilisées pour la prospection du sous-sol à l'échelle régionale, permettant ainsi de couvrir de grandes surfaces en particulier les zones difficiles d'accès. Le sujet de thèse concerne le développement de techniques d'interprétation des données géophysiques pour le problème des ressources naturelles et de l'environnement. La première partie de cette thèse concerne le développement d'une méthode de calcul direct des composantes des champs gravimétrique et magnétique à partir d'une structure (corps) géologique modélisé(e) par une grille à base de tétraèdres, ce qui permet de représenter des modèles géologiques très complexes particulièrement en présence de zones faillées et hétérogènes avec un nombre d'éléments optimal. Plusieurs techniques d'inversions utilisent des contraintes mathématiques pour la résolution du problème inverse en modélisation. Ces contraintes permettent de réduire le nombre de modèles possibles. Cependant les solutions proposées appelées aussi « le modèle le plus probable » présentent des solutions lisses, ce qui est loin de représenter la réalité géologique. Pour éluder ce problème, les deuxièmes et troisièmes parties de la thèse proposent des améliorations majeures du processus d'inversion par l'utilisation des méthodes géostatistiques telles que la Simulation Gaussienne Séquentielle ou la Co-Simulation dans le cas d'une inversion conjointe afin d'estimer les probabilités a posteriori des modèles simulés. La quatrième partie de ce mémoire présente une alternative à la simulation de plusieurs variables. L'apprentissage du réseau de neurones supervisé par un certain nombre de points permet d'établir une relation entre les différentes variables / In recent years with the technology developments, airborne geophysical methods (gravity, magnetic, and electromagnetic) are widely used in the natural resource exploration at the regional scale. It covers large areas particularly in the areas with difficult access. The first part of this thesis consist on the development of new forward modeling algorithm for the calculation of the components of the gravity and magnetic fields based on a tetrahedron grid. The tetrahedral mesh allows the representation of very complex geological models holding many heterogeneous and faulted zones with an optimal number of elements, this reduces significantly the time calculation. Several inversion techniques use mathematical constraints for the resolution of the inverse problem in order to reduce the number of possible models. However the proposed solutions called also "the most probable model" provide a smooth solutions that cannot represent the geological reality. To circumvent this problem in the second and the third parts of this thesis, we made two major improvements. The first, we integrate Sequential Gaussian Simulation into the inversion procedure to determine a possible distributions of a single property. The second is that we used the Co-Simulation in the case of joint inversion to estimate a posteriori probabilities of the simulated models. The last part of this thesis presents an alternative to the several variables simulation, supervised learning of neural networks allows to establish a relationship between the different variables
3

Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteurs

Stenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
4

Contribution du quark étrange dans le nucléon

Real, J.S. 12 February 2010 (has links) (PDF)
L'interaction forte, qui permet de lier entre eux les quarks afin de former les nucléons, est assez bien décrite par la chromodynamique quantique (QCD) à très haute énergie lorsque les quarks sont quasiment libres. Mais cette interaction, qui permet aussi de lier les nucléons entre eux pour former les noyaux, est incalculable à basse ou moyenne énergie lorsque les quarks sont confinés. La physique des énergies intermédiaires essaye de comprendre comment les caractéristiques des nucléons ou mésons, ainsi que leur interaction effective, peuvent s'expliquer à partir des quarks et interactions de QCD. C'est dans ce cadre que je travaille depuis mon entrée au CNRS il y a maintenant 15 ans. Ma première activité a été la construction et l'utilisation d'un polarimètre à deuton qui a été utilisé au Laboratoire National SATURNE pour diverses expériences avec des hadrons de basses énergies, et plus récemment au Thomas Jefferson National Laboratory aux États-Unis pour l'expérience $t_{20}$. Puis je me suis engagé ces 10 dernières années dans la mesure du quark étrange dans les propriétés électromagnétiques du nucléon. Le Thomas Jefferson National Laboratory (TJNAF aussi appelé JLab pour Jefferson Laboratory) héberge l'accélérateur d'électrons de dernière génération CEBAF (Continuous Electron Beam Facility) qui est capable de produire des faisceaux de haute énergie (jusqu'à 6 GeV), très intenses et avec une très grande polarisation. C'est grâce à des accélérateurs comme celui-ci qu'a été possible le développement des expériences de mesure de violation de parité en diffusion d'électron. En 1998, la collaboration $G^{0}$ a commencé la construction d'un détecteur dédié à ce genre de mesures, avec comme objectif de séparer les contributions du quark étrange à la structure électrique et magnétique des nucléons. Deux laboratoires en France étaient engagés dans cette collaboration et avaient en charge la construction de la moitié du détecteur et de l'électronique associée pour la première phase de cette expérience qui s'est déroulée entre 2002 et 2005. Parallèlement, le LPSC Grenoble a développé de nouveaux détecteurs ainsi que leur électronique pour la deuxième phase de ce programme qui s'est déroulée entre 2001 et 2009. Dans le premier chapitre, j'expose le formalisme qui permet d'accéder à la contribution des quarks étranges puis, après une présentation des techniques expérimentales de violation de parité pour mesurer cette contribution, je décris les différentes expériences en diffusion d'électron. Dans le chapitre expérimental, je me concentre sur l'expérience $G^{0}$ qui a été mon activité de recherche dominante des 11 dernières années. Le chapitre 4 est consacré au bilan de 15 ans de programme expérimental dans ce domaine et présente ce que l'on sait aujourd'hui à partir de toutes ces mesures.
5

Etudes du couplage spin-orbite en nano-photonique. applications à l'excitation unidirectionnelle de modes plasmoniques guidés et à la génération d'opto-aimants nanométriques contrôlables par l'état de polarisation de la lumière / Spin-Orbit coupling in nanophotonics. Application to unidirectionnal excitation of plasmonics guided modes and nanométrics opto-magnetisation generation controled by the polarisation state of light

Lefier, Yannick 09 December 2016 (has links)
Cette thèse porte sur la manipulation du moment angulaire de la lumière à l'échelle sub-micronique. Le moment angulaire total de la lumière est composé d'une partie de spin, relié au degré de liberté de polarisation circulaire de la lumière, et d'une partie orbitale, relié au degré de libertés spatiaux de la lumière que sont sa direction de propagation (locale et globale) et sa distribution spatiale d'intensité. Le couplage spin-orbite existant entre ces deux contributions permet alors de manipuler les degrés de libertés spatiaux de la lumière par un simple contrôle de son état de polarisation circulaire. Dans cette thèse, nous avons étudié et exploité ce couplage à l'échelle sub-micronique dans deux nouveaux phénomènes que nous avons mis en évidence. Le premier met à profit ce couplage pour permettre d'exciter de manière unidirectionnelle des modes plasmoniques guidés. Une étude complète (numérique, expérimentale et analytique) de ce phénomène nouveau, basé sur un couplage entre le moment de spin du photon incident et le moment orbital extrinsèque des modes plasmoniques guidés dans la courbure d'un guide, est présentée. La deuxième étude présente une voie pour tirer parti du transfert de moment orbital de la lumière à un gaz d'électrons libres dans un métal afin de générer et contrôler le sens et la géométries de boucles de courants sub-microniques dans des structures métalliques. Ce contrôle permettrait la génération d'optomaimants nanométriques, entièrement contrôlés par la lumière, pouvant être modulés aux fréquences optiques. Ce travail a été soutenu par le LABEX Action. / This thesis focuses on the manipulation of the angular momentum of light at the nanoscale.The total angular momentum of light is composed of a spin component, connected to the polarization degree of freedom of light, and an orbital component, related to the spatial degrees of freedom of the light which are its propagation direction (local and global) and its intensity distribution. The spin-orbit coupling between these two contributions allows the control of the spatial degrees of freedom of light by a simple manipulation of its circular polarization state. In this thesis, we have studied and applied this coupling at the nanoscale anbd we have highlighted two new phenomenas. The first one takes part of this coupling to allows unidirectional excitation of plasmonic guided modes. A complete study (numerical, experimental and analytical) of this new phenomenon, based on a coupling between the spin of the incident photon and the extrinsic orbital momentum of the plasmonic guided modes within the curvature of a waveguide, is presented. The second study propose a way to benefit from the transfer of the angular momentum of light to the free electrons gas in a metal to generate and control the direction and the geometry of nanoscale current loops in metallic structures. this control would at optical frequencies. This work was supported by the LABEX Action.
6

Contribution à la modélisation du champ électromagnétique dans les dispositifs basses fréquences par la méthode des moments / Contribution to the modeling of the electromagnetic field in the low frequency devices by the method of moments

Oubaid, Rania 16 December 2014 (has links)
La modélisation numérique est devenue incontournable dans le monde de la conception industrielle et de la recherche scientifique. Les problèmes à résoudre étant de plus en plus complexes, il est nécessaire d'adopter une approche adaptée au problème traité. Dans les domaines d'application de l'électromagnétisme basses fréquences, la méthode des éléments finis (MEF) est la méthode de référence. Actuellement, de plus en plus de dispositifs ouverts comportant de grands entrefers sont développés. Dans ce genre de problèmes, la MEF n'est pas optimale car elle nécessite de mailler un grand volume d'air pour obtenir une bonne précision. Dans cette thèse nous étudions, au travers de deux applications (représentant respectivement un système ouvert et un système à grands entrefers) une méthode alternative qui ne souffre pas des limitations évoquées : la méthode des moments (MoM) de type intégrale volumique. En effet, cette méthode nécessite de mailler uniquement les milieux magnétiques. Le principe de cette méthode est d'abord de calculer l'aimantation induite dans le milieu linéaire ou non linéaire placé sous l'effet d'un champ extérieur. Pour cela, le milieu magnétique est discrétisé en éléments hexaédriques. Dans chaque élément est localisée une aimantation considérée comme uniforme. Ensuite, la connaissance de cette aimantation induite permet de déterminer le champ magnétique en tout point de l'espace: interne, proche ou lointain. Dans un premier temps, un code basé sur la MoM a été développé pour la première application. Il permet de calculer le champ magnétostatique proche ou lointain d'une antenne basse fréquence. Une méthode permettant de calculer l'énergie magnétostatique contenue dans tout l'espace a été également mise au point. Dans deuxième temps, afin de pouvoir traiter une géométrie complexe, des modifications ont été intégrées au code afin de modéliser la deuxième application : le dispositif de test des propulseurs à effet Hall (PPS-Flex). Il s'agit de prendre en compte des symétries géométriques et physiques caractéristiques de ce dispositif. Les résultats montrent que la MoM permet de calculer le champ magnétique à l'intérieur de son canal et éventuellement au-delà. Dans les deux exemples étudiés, la méthode des moments a donné des résultats satisfaisants lors de la comparaison avec la méthode des éléments finis 3D et avec les résultats de mesures. Ces résultats montrent des gains potentiellement significatifs sur le plan des temps de calculs. A l'issu de cette thèse, nous disposons d'un outil de laboratoire permettant de modéliser le comportement du champ magnétostatique dans des systèmes ouverts et/ou à grands entrefers. / The numerical modeling has become essential in the world of industrial design and scientific research. The problems to be solved are increasingly complex making it necessary to adopt an appropriate approach for the problem addressed. In the domains of application of low frequency electromagnetic, the finite element method (FEM) is the reference method. Currently, more and more devices having large open gaps are developed. In this kind of problems, the MEF is not optimal as it requires to mesh a large volume of air to get a good accuracy. In this thesis we study, through two applications (an open system and a large gap system), an alternative method that does not suffer from the limitations discussed: the method of moments (MoM) of volume integral type. Indeed, this method requires to mesh only the magnetic media. The principle of this method is first to calculate the induced magnetization in the linear or nonlinear medium under the effect of an external field. To accomplish this, the magnetic medium is discretized into hexahedral elements. In each element, a uniform magnetization is localized. Then, the determination of this induced magnetization allows to compute the magnetic field at any point in the space: internal, near or far. In the first step, a code based on the MoM has been developed for the first application. It allows to calculate the magnetostatic field near or far from a low-frequency antenna. A method to calculate the magnetostatic energy in the whole space was also developed. Meanwhile, in the second step, in order to treat complex geometry, some modifications have been integrated into the code to model the second application: the test device of Hall effect thrusters (PPS-Flex). It consists in taking into account the physical characteristics and geometric symmetry of the device. The results show that MoM allows to calculate the magnetic field inside the channel and possibly beyond. In both examples studied, the MoM has given satisfactory results when compared with the 3D finite element method and with the results of measurements. These results show potentially significant gains in the computation time. At the end of this thesis, we have developed a laboratory tool allowing to model the behavior of the static magnetic field in open and/or wide-gap systems.
7

Étude comparative des lésions cérébrales dans deux maladies démyélinisantes pédiatriques récurrentes : la sclérose en plaques et la maladie associée aux anticorps anti- glycoprotéine oligodendrocytique de myéline

Mahmoud, Sawsan 07 1900 (has links)
Les syndromes démyélinisants acquis (SDA) pédiatriques sont un groupe de maladies qui affectent la substance blanche (SB) et la substance grise (SG) du système nerveux central (SNC) chez les enfants, et qui partagent certaines caractéristiques et mécanismes pathologiques. Les SDA peuvent être monophasiques ou récurrents. Les SDA comprennent des maladies telles que l'encéphalomyélite aiguë disséminée (EMDA), les troubles du spectre de la neuromyélite optique (TS-NMO), la sclérose en plaques (SEP) et le syndrome démyélinisant récurrent avec anticorps contre la glycoprotéine oligodendrocytique de myéline (anticorps anti-MOG). Ce dernier syndrome, appelé aussi maladie MOG+, a été reconnu récemment comme une entité distincte faisant partie des maladies démyélinisantes récurrentes chez les enfants. La maladie MOG+ présente des caractéristiques semblables à celles de la SEP; en effet, certains cas ont été déjà considérés comme une forme « atypique » de SEP. La maladie MOG+ et la SEP partagent des lésions dans la SB du SNC, mais la SEP est caractérisée aussi par des lésions corticales (LCs) cérébrales, insuffisamment étudiées dans la maladie MOG+. Par conséquent, le but de cette recherche a été de comparer les caractéristiques démographiques et des lésions cérébrales visibles sur des études d’imagerie par résonance magnétique (IRM) chez les enfants atteints de SEP et ceux atteints de la maladie MOG+. Pour atteindre cet objectif, nous avons utilisé des scans IRM 3T, incluant les contrastes pondérés T1, FLAIR et des images de transfert de magnétisation (ITM) de 14 enfants atteints de SEP et 13 enfants atteints de la maladie MOG+. Nous avons mesuré le nombre des LCs, le volume des lésions dans la SB et les valeurs normalisées d’ITM dans les LCs et les lésions de la SB. Nos résultats ont montré que les enfants atteints de la maladie MOG+ étaient plus jeunes au début de la maladie et que celle-ci présentait une durée plus longue que la maladie du groupe SEP. Quant aux lésions cérébrales, les LCs étaient présentes dans la maladie MOG+, mais leur nombre était significativement plus élevé dans le groupe SEP. Cependant, les valeurs normalisées d’ITM dans ces lésions (valeurs qui sont sensibles à la quantité de myéline) n'étaient pas significativement différentes entre les deux groupes. En plus, le volume des lésions de la SB était significativement plus élevé dans le groupe SEP et les valeurs normalisées d’ITM dans ces lésions, significativement inférieures comparativement à la maladie MOG+, témoignant ainsi d’une démyélinisation plus sévère et des différences potentielles dans les mécanismes de démyélinisation. / Pediatric Acquired Demyelinating Syndromes (ADS) are a group of diseases that affect the white matter (WM) and gray matter (GM) of the central nervous system (CNS) in children and that share similar pathological characteristics and mechanisms. ADS can be monophasic or recurrent. The ADS include diseases like acute disseminated encephalomyelitis (ADEM), neuromyelitis optic spectrum disorders (NMO-SD), multiple sclerosis (MS) and Relapsing Myelin Oligodendrocyte Glycoprotein (MOG) syndrome or MOG+ disease, which has been recently recognised as a distinct pathology and is part of the relapsing ADS in children. MOG+ disease shares features with MS; indeed, some MOG+ cases have been considered as an “atypical” form of MS until recently. Both MOG+ disease and MS present lesions in the WM of the CNS. MS is also characterized by focal brain cortical lesions (CL), which have not been extensively studied in MOG+ disease yet. For this reason, the aim of this research project was to compare the demographic and brain magnetic resonance imaging (MRI) characteristics of children with MS and children with MOG+ disease. To achieve our goal, we used 3T MRI including T1-weighted, FLAIR and magnetization transfer ratio (MTR) contrasts of 14 MS participants, and 13 relapsing MOG+ participants. CL counts, WM lesion volumes, normalized MTR values in CLs, and WM lesions were compared across groups. Our results show that children with MOG+ disease were younger at disease onset and had a longer disease duration compared to the MS group. CL were present in MOG+ participants, but counts were significantly higher in the MS group. However, their normalized-MTR values, which are sensitive to myelin, were not significantly different between both groups. WM lesion volumes were significantly higher in the MS group, but their normalized MTR values were significantly lower than in MOG+ WM lesions, likely reflecting more severe demyelination and potential differences in the demyelinating mechanism.

Page generated in 0.0959 seconds