• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 28
  • 28
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interactions between glacial activity, dust-borne iron speciation, diatom productivity, and the biological pump

Shoenfelt, Elizabeth Marie January 2019 (has links)
Dust-borne iron plays an important role in modulating climate. Iron is a necessary micronutrient, crucial to growth of phytoplankton that fix atmospheric carbon dioxide into organic carbon. Bioavailable iron is relatively scarce in the oxygenated ocean due to the low solubility of oxidized iron, and it limits primary production in many ocean regions. Increased dust-borne iron reaching iron-limited regions is associated with lower atmospheric carbon dioxide, due to more complete utilization of new nitrogen (the biological pump). Since iron solubility in the ocean is low, most iron is in the solid phase, including particles and colloids from dust and insoluble iron oxyhydroxide minerals that precipitate when there is high dissolved iron not chelated by organic ligands. The chemical form (speciation) of iron greatly impacts its solubility, yet the mechanisms of solid-phase iron utilization by diatoms and the impact of solid-phase iron speciation on dust-borne iron bioavailability are not well known. Glacial activity has been associated with highly soluble minerals, but the impact of glacial activity on bioavailable iron supply has not previously been quantified. In this dissertation, I investigate the role of solid-phase dust-borne iron speciation on its bioavailability to iron-efficient diatoms, and its possible role in modulating climate through the efficiency of the biological pump in the Southern Ocean. In Chapter 1, I show that primary iron(II) silicates mobilized from bedrock through glacial physical weathering are more bioavailable than chemical weathering products such as iron(III)-rich iron oxyhydroxides and secondary clay minerals. In Chapter 2, I show that diatoms use solid-phase iron more efficiently when surface contact between the cell and particle is allowed, suggesting a mechanism of solid-phase iron utilization in addition to bulk solubility. In Chapter 3, I show that glacial activity increases the relative bioavailability of dust-borne iron reaching the Southern Ocean, by increasing the iron(II) silicate content. Finally, in Chapter 4, I present evidence that suggests physical weathering of iron(II)-rich bedrock controls the speciation and bioavailability of particulate iron across the globe. Thus, it is important to consider global and temporal changes in dust-borne iron speciation and the proximity of dust and phytoplankton cells when modeling carbon dioxide drawdown by iron fertilization of phytoplankton. It is also important to consider the relative importance of physical versus chemical weathering to understand iron fertilization on all timescales, and the relative importance of biotic and abiotic carbon dioxide drawdown.
12

Glaciological investigations beneath an active polar glacier /

Cuffey, Kurt. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 99-110).
13

Is MWP 1A Real and Could It have Originated in the Northern Hemisphere in Response to Bolling Warming

Birkel, Sean D. January 2004 (has links) (PDF)
No description available.
14

The interaction between tectonics, topography, and climate in the San Juan Mountains, Southwestern Colorado

McKeon, Ryan Edward. January 2009 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Cathy Whitlock. Includes bibliographical references (leaves 72-77).
15

A nonlinear numerical model of the Lake Michigan Lobe, Laurentide Ice Sheet

Jenson, John W. 27 September 1993 (has links)
Graduation date: 1994
16

Palaeosurfaces and palaeovalleys on North Atlantic previously glaciated passive margins : reference forms for conclusions on uplift and erosion

Bonow, Johan M. January 2004 (has links)
Palaeosurfaces and palaeovalleys are landforms under destruction in the present climate and/or tectonic regime, and thus mainly reflect processes not active today. Uplifted palaeosurfaces exist along the formerly glaciated passive continental margins around the North Atlantic. Large-scale landform development has recently become a matter of interest also for geologists and geophysicists as the result of an increasing awareness that a thorough knowledge of uplift, erosion, deposition and development of landforms along continental margins can only be accomplished by combined studies using independent data from different scientific disciplines. The present study focuses on one of these above data sets; the landform record. Two uplifted areas, southern Norway and central West Greenland, were selected for landform analysis of high resolution digital elevation models, aerial photographs, relation between landforms in basement and cover rocks, offshore seismic lines and X-ray diffraction of clay minerals in saprolites. In southern Norway, analysis of slope angles within the range of pediment slopes was combined with analysis of main valley incision. This resulted in the identification of three main planation surfaces in a stepped sequence formed along the main valleys as a consequence of tectonic uplift events, maybe in the Palaeogene, (in total >1000 m). Two phases of late uplift (~900 m), probably in the Neogene, triggered incision of deep fluvial valleys, later reshaped by glacial erosion (up to 300 m). In central West Greenland palaeosurfaces were analysed in relation to cover rock of different age. An exhumed etch surface, characterized by a typical hilly relief, occurs on Disko and south of Disko Bugt, and are by the presence of cover rocks shown to be sub-Palaeocene in origin. To the north, a post-Eocene erosion surface on Nuussuaq, cuts across basement and basalt and was probably formed close to sea level. Uplift in two phases elevated this surface up to 2000 m above present sea level and broke it in differently tilted tectonic blocks. South of Disko Bugt, a planation surface, of probably the same age as the one on Nuussuaq, cuts the tilted etch surface, and also cuts across different bedrock types. The planation surface rises towards the south and splits in two surfaces, separated in altitude up to 300 m, within two highly elevated areas. The separation into two surfaces indicate two uplift events: A first minor event of a few hundred metres in the uplift centres resulted in incision of the lower planation surface. This event was later followed by a major uplift event amounting to >1000 m. Correlation with the offshore sedimentary record suggests that both uplift events occurred in the Neogene. The erosion pattern calculated from one reconstructed palaeosurface to present topography shows large spatial variations. This is interpreted as an effect of differential bedrock resistance and local variations of glacial erosion (400–1300 m in low areas). The results presented in this thesis demonstrate the usefulness of palaeosurfaces and palaeovalleys as tools for deciphering magnitude of uplift events, establishing relative event chronologies and for calculation of erosion. Moreover integrated studies of palaeolandforms, offshore geology and thermal chronologies, are shown to be invaluable when used to solve the spatial and temporal patterns of uplift, erosion and deposition.
17

Timescale and Latitudinal dependence of Glacial Erosion Rates from Patagonia and Antarctic Peninsula Tidewater Glaciers (46-65 deg S)

January 2012 (has links)
I use time-constrained sediment volumes delivered by glaciers calving into Marinelli Fjord (55°S), an outlet glacier of the Cordillera Darwin Ice Cap, Southern Patagonia, to determine erosion rates across different timescales. These results indicate that modern sediment yields and erosion rates from temperate tidewater glaciers can exceed long-term values over the time of deglaciation after the LGM (centennial and millennial time scales) by up to two orders of magnitude. In northern Patagonia (Gualas glacier area, 46.5°S), an overall increase in sediment production in the late Holocene is interpreted as result of a sharp increase in centennial timescale precipitation (intensified westerly winds). Erosion rates values span two orders of magnitude from 0.03 mm/yr for Lapeyrere Bay at Anver Island (~64.5°S), up to 1.09 mm/yr for San Rafael glacier at northern Patagonia (~46.5°S). Rates from the Antarctic Peninsula glaciers are in general lower than the temperate Patagonian glaciers. A good correlation of erosion rates and modern (estimated sea level annual 1970 temperature) sea level annual temperature was found. Latitudinal decrease of millenial is interpreted as result of decreasing annual temperature although decreasing in annual precipitation is suggested. The pattern of thermochronology ages from other studies (Thompson et al., 2010; Guenthner et al., 2010), along with the values of 10 3 and 10 6 years timescales erosion rates from this study, indicate that long-term glacial erosion decreases significantly its efficiency with latitude, implying that long-term glacial cover acts as a protective blanket, hindering erosion and allowing mountain growth. We conclude that the pattern of erosion rate decrease with timescale reflects the sensitivity of glaciers to climate variability. Temperate glaciers have higher sensitivity and greater response amplitude to climatic stress than subpolar or polar glaciers. This results in a decrease in erosion rates (sediment production) with latitude, and also in a decrease of erosion rate gradients with timescale.
18

Role of lithospheric delamination and ice-driven rockfall erosion in the evolution of mountainous landscapes /

Hales, Tristram Charles, January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 115-137). Also available for download via the World Wide Web; free to University of Oregon users.
19

Provenance of the ice-cored moraine at Mt. Achernar, Law Glacier, Antarctica

Bader, Nicole Ann January 2014 (has links)
Glacial till from the Mt. Achernar moraine (MAM) records pre- and post- last glacial maximum (LGM) compositional variability of an East Antarctic moraine sequence through time and space. Pebble lithology, detrital zircon geochronology, and till geochemistry were analyzed on samples from a 6.5 km transect. Hummocky topography occurs with the most recently exposed material along the active ice margin (Zone 1), followed by a relatively flat and low region (Zone 2), and then a series of ~2 m high parallel/sub-parallel ridges and troughs accompanied by distinct color changes that are directly related to the dominant lithology of the region (Zones 3–5). Zone 3 is dominated by ~38% more sedimentary rocks than adjacent zones and has an overall shape of a broad arch superimposed with smaller ridges. Zone 4 is composed of distinct colored bands that alternate between dominant sedimentary and mafic igneous lithologies. These dominant sedimentary and intermediate/mafic igneous rocks for all Zones are interpreted to be primarily the Beacon and Ferrar Supergroup rocks respectively. The U/Pb data from the till is consistent with a Beacon Supergroup source as samples consistently show significant populations from the Permian ~250-260 Ma, the Proterozoic ~565–600 Ma, ~950–1270 Ma, and ~2300-2320 Ma, as well as (and) the late Archean ~2700-2770 Ma. The Pagoda, Mackellar, Buckley, and Fremouw Formations are potential sources of the detrital zircons. When paired with surface exposure ages, the U/Pb data indicates that the debris source has been consistent over the past ~555 ka, implying relatively stable ice sheet behavior. However, ice sheet change is indicated by a trim line present on Mt. Achernar that can be traced back to the boundary between Zones 3 and 4, as well as a change in pebble lithology, geochemistry, and morphology of Zone 3. Zone 3 records a time of ice sheet thickening and a change in provenance during the LGM. Zone 4 is pre-LGM, Zone 2 records deglaciation, and Zone 1 is still actively connected to the Law Glacier. This study reveals the broader importance of using multiple provenance techniques when interpreting provenance changes in till over time.
20

Linking glacial erosion and rock type via spectral roughness and spatial patterns of fractures on glaciated bedrock in the Teton Range, Wyoming, USA

Dodson, Zoey January 2018 (has links)
No description available.

Page generated in 0.0546 seconds