• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1158
  • 665
  • 228
  • 226
  • 154
  • 110
  • 78
  • 34
  • 21
  • 15
  • 13
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 3242
  • 485
  • 306
  • 286
  • 246
  • 246
  • 207
  • 192
  • 191
  • 177
  • 167
  • 167
  • 163
  • 159
  • 153
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Determination of viscoelastic properties of adhesives

Karlsson, Patrik January 2014 (has links)
A research project at Linnaeus University focuses on optimizing theadhesives joints between wood and glass, with the aim of obtain stiffcomponents that can act as a load and stabilizing elements and still betransparent. But there is, however, still a lack of knowledge regarding theadhesive materials which need to be further investigated. This thesis focused on testing six different adhesives in relaxation and todetermine the viscosity (η) and modulus of elastic (MOE, E). Viscosity andMOE are then used in combination in a standard linear solid model (SLS)describing the viscoelasticity mathematically. Figures and tables are used topresent the results and the evaluation. The so determined parameters can beused in e.g. finite element models for the design of load bearing timber glasscomposites.
612

Measurement and Analysis of Flow in 3D Preforms for Aerospace Composites

Stewart, Andrew L 16 November 2012 (has links)
Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles. This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches.
613

Characterization and improvement of copper/glass adhesion

He, Baofeng January 2012 (has links)
The development of glass substrates for use as an alternative to printed circuit boards (PCBs) attracts significant industrial attention, because of the potential for low cost but high performance interconnects and optical connection. Electroless plating is currently used to deposit conductive tracks on glass substrates and the quality of copper / glass adhesion is a key functional issue. Without adequate adhesive strength the copper plating will prematurely fail. Existing studies have covered the relationship between surface roughness and adhesion performance, but few of them have considered the detail of surface topography in any depth. This research is specifically considering the mechanical contribution of the glass surface texture to the copper / glass adhesive bond, and attempting to isolate new ISO 25178 areal surface texture parameters that can describe these surfaces. Excimer laser machining has been developed and used to create a range of micro pattern structured surfaces on CMG glass substrates. Excimer mask dimensions and laser operation parameters have been varied and optimized according to surface topography and adhesion performance of the samples. Non-contact surface measurement equipment (Zygo NewView 5000 coherence scanning interferometry) has been utilized to measure and parameterize (ISO 25178) the surface texture of the glass substrates before electroless copper metallization. Copper adhesion quality has been tested using quantitative scratch testing techniques, providing an identification of the critical load of failure for different plated substrates. This research is establishing the statistical quality of correlation between the critical load values and the associated areal parameters. In this thesis, the optimal laser processing parameter settings for CMG glass substrate machining and the topographic images of structured surfaces for achieving strong copper / glass plating adhesion are identified. The experimental relationships between critical load and areal surface parameters, as well as the discussions of a theoretical approach are presented. It is more significant to consider Sq, Sdq, Sdr, Sxp, Vv, Vmc and Vvc to describe glass substrate surface topography and the recommended data value ranges for each parameter have been identified to predict copper / plating adhesion performance.
614

Women leadership in local government : an assessment of support by key stakeholders

Phala, Sylvia Princess 20 August 2012 (has links)
This report has established that women in leadership positions in local government experience similar barriers as other women leaders in the corporate sector despite the legislative, academic and political support provided by key stakeholders. As stated in Chapter 5, women in leadership positions managed and lead faced with prejudism emanating from social customs, informal institutional values, norms and cultures like in the private sector. This means that the findings on the study –Assessment of support by key stakeholders was note effective as it was envisaged. The study drew four key challenges that affected women in local government including limited support provided by the key stakeholders. Some recommended on possible interventions along these obstacles were outlined in chapter 5. These include: I) Legislation and training which were perceived to be non effective since “Attitudinal changes cannot be dictated, mandated and legislated” van der Colff (2004). II) Lack of Networks and Mentorships. III) Negative Attitude based on patriarchy and, IV) The need for Political Parties’ to reengineer that strategy in addressing women challenges.
615

Rust Belt and Other Stories

Slager, Rachel D 19 May 2017 (has links)
Rust Belt and Other Stories is a collection of stories exploring characters in the bleak moments when social oppression challenge the perceived meaning of their lives. The disenchantments are influenced by distinctive settings, which set the tone for the stories. Place is an active force shaping the protagonists and adding to the nuance of character relationships, dialogue and philosophical outlooks.
616

Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

Chen, Song January 2016 (has links)
Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradation, and repeating masticatory force. The ideal restorative dental cements should have superior mechanical properties, chemical stability, aesthetic, good handling properties, biocompatibility, antibacterial properties, and preferably bioactivity. This thesis presents research on dental restorative cements with enhanced properties. The overall aim was to increase the bioactivity and antibacterial properties of dental restorative cements without affecting their other properties. The effect from adding calcium silicate to glass ionomer cement (GIC) was investigated. The results showed that calcium silicate could increase the bioactivity and reduce the cytotoxicity of conventional glass ionomer cement without compromising its setting and mechanical properties. Hydroxyapatite (HA) with a high aspect ratio and thin nacreous-layered monetite sheets were also synthesized. Nano HA particles with an aspect ratio of 50 can be synthesized by both precipitation and hydrothermal methods. The aspect ratio was controlled via the pH of reaction medium. Thin nacreous-layered monetite sheets were synthesized through a self-assembly process in the presence of an amine based cationic quaternary surfactant. Temperature, pH, and presence of surfactant played essential roles in forming the nacreous-layered monetite sheets. Then the effect from adding silver doped HA and monetite particles was investigated. The results showed that the antibacterial properties of GIC could be increased by incorporating silver doped HA and monetite particles. Further examination showed that the pH change, F- ion release, and concentration of released Ag+ ions were not responsible for the improved antibacterial properties. The quasi-static strengths and compressive fatigue limits of four types of the most commonly used dental restorations were evaluated. In our study, resin modified GIC and resin-based composite showed superior static compressive strength and fatigue limits compared to conventional GIC. The static compressive strength of dental cements increased with the aging time. However, aging had no effect on the compressive fatigue limit of resin modified GIC and resin-based composite. The compressive fatigue limit of conventional GIC even showed a drastic decrease after aging.
617

Lap splice in glass fiber reinforced polymer‐reinforced concrete rectangular columns subjected to cyclic‐reversed loads

Naqvi, Syed 27 October 2016 (has links)
This study presents the experimental results of nine full-scale lap spliced glass-fiber reinforced polymer (GFRP) reinforced concrete (RC) columns, and one additional reference steel-RC column with lap splices, under axial and cyclic-reversed loads. The test parameters included type of reinforcement, lap splice length of longitudinal reinforcement, transverse reinforcement spacing, and the effect of using steel fiber-reinforced concrete (SFRC). Test results indicated that a splice length of 60 times the diameter of the longitudinal column bar was adequate in transferring the full bond forces along the splice length and were able to maintain the lateral load carrying capacity when subjected to higher levels of axial loads and drift ratios. In addition, lap spliced GFRP-RC columns with closely spaced transverse reinforcement achieved high levels of deformability. Furthermore, the use of SFRC in columns with inadequate splice increased the peak lateral strength and the energy dissipation of the specimens. / February 2017
618

A novel bioactive glass-enhanced orthodontic bonding resin: A shear bond strength study

Johnson, Cole 03 May 2011 (has links)
Enamel decalcification caused by poor oral hygiene is a significant problem in orthodontics. Bioactive glass-containing resins have been shown to release Ca2+ ions into surrounding solution. The purpose of this study was to determine the shear bond strength of four different compositions of orthodontic resin prepared with bioactive glass (N=20). Premolars were bonded using one of four BAG-BOND compositions. Brackets were debonded and ARI scores were given. The mean shear bond strength was 7.23 ± 2.47 MPa (62 BAG-BOND), 8.25 ± 2.87 MPa (65 BAG-BOND), 8.78 ± 3.08 MPa (81BAG-BOND) and 5.80 ± 2.27 MPa (85 BAG-BOND). 65 and 81 BAG-BOND were significantly higher than 85 BAG-BOND. The 62 BAG-BOND group was not statistically significantly different from any other group. All groups exhibited a cohesive bond failure and were not statistically significant from each other. Three compositions of the novel orthodontic adhesive exhibited adequate bond strength for clinical applications.
619

Light and Life

Bishop, Christine Elizabeth 01 January 2006 (has links)
Faith and family are the aspects of my life that bring me joy and inspiration. This joy is represented as light and is present both literally and symbolically in all my work. I use light or a flame in my ceramic pieces to represent warmth, love, and spirituality. Images of nature are employed to suggest life. My most recent ceramic work embodies aspects of family and the joy of motherhood. My paintings focus on my family and are centered on the moments or memories that are significant to them. I try to paint the light of their lives.
620

The Imagination and the Real

Gothrup, Thomas Ryan 28 April 2009 (has links)
This thesis challenges the sedentary nature of living vicariously through the television, whether it be watching sports or playing video games. Since the advent of professional sports spectators have become accustomed to stadiums stuffed with people cheering on their favorite teams. The television substitutes for this visceral experience and allows viewers to live surrogate lives without leaving the living room. Ultimately, I see this thesis as a social commentary on the impact of sports and media in our society. This project highlights the sociological implications of the loss of interpersonal contact perpetuated by media.

Page generated in 0.0301 seconds