• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bounds on the Global Domination Number

Desormeaux, Wyatt J., Gibson, Philip E., Haynes, Teresa W. 01 January 2015 (has links)
A set S of vertices in a graph G is a global dominating set of G if S simultaneously dominates both G and its complement Ḡ. The minimum cardinality of a global dominating set of G is the global domination number of G. We determine bounds on the global domination number of a graph and relationships between it and other domination related parameters.
2

Global Domination Edge Critical Graphs

Desormeaux, Wyatt J., Haynes, Teresa W., Van Der Merwe, Lucas 01 September 2017 (has links)
A set S of vertices in a graph G is a global dominating set of G if 5 simultaneously dominates both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We study the graphs for which removing any arbitrary edge from G and adding it to G decreases the global domination number.
3

Global Domination Stable Trees

Still, Elizabeth Marie, Haynes, Teresa W. 08 May 2013 (has links)
A set of vertices in a graph G is a global dominating set of G if it dominates both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications (edge removal, vertex removal, and edge addition) on the global domination number. In particular, for each graph modification, we study the global domination stable trees, that is, the trees whose global domination number remains the same upon the modification. We characterize these stable trees having small global domination numbers.
4

Global Domination Stable Trees

Still, Elizabeth Marie, Haynes, Teresa W. 08 May 2013 (has links)
A set of vertices in a graph G is a global dominating set of G if it dominates both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications (edge removal, vertex removal, and edge addition) on the global domination number. In particular, for each graph modification, we study the global domination stable trees, that is, the trees whose global domination number remains the same upon the modification. We characterize these stable trees having small global domination numbers.
5

Global Domination Stable Graphs

Harris, Elizabeth Marie 15 August 2012 (has links) (PDF)
A set of vertices S in a graph G is a global dominating set (GDS) of G if S is a dominating set for both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications on the global domination number. In particular, we explore edge removal, edge addition, and vertex removal.

Page generated in 0.1007 seconds