• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 14
  • 13
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Globular Cluster Kinematics and Dark Matter Content of NGC 4649

CAMPBELL, AINSLEY 12 October 2011 (has links)
The globular cluster system (GCS) of the elliptical galaxy NGC 4649 has been examined using the Gemini Multi-Object Spectrograph (GMOS); spectra for 156 candidate globular clusters (GCs) were obtained, extending to a galactocentric radius of 42 kpc. The system was found to have an even 78 GC candidates per population, using a colour of g-i = 0.92 (Faifer et al. 2011) to split the system into sub-populations. The populations refer to their metalicity; a g-i<0.92 is considered metal-poor (MP), and a g-i>0.92 is metal-rich (MR). Line-of-sight-velocity measurements and subsequent modelling, were used to measure the full GCS rotational velocity as 59+/-28 km/s, with a position angle of 218+/-28 degrees. The MR population was found to have rotational velocity of 81+/-42 km/s with a position angle of 221+/-29 degrees, while the MP population measures a rotational velocity of 30+/-36 km/s with a position angle of 202+/-73 degrees. The average velocity dispersion for the full GCS was calculated at 247+/-61 km/s, the MR population 266+/-94 km/s, and the MP population, 221+/-76 km/s. These findings are consistent (within uncertainties) with previous studies by Hwang et al.(2008), and Bridges et al. (2006). The velocity dispersion profile for all populations is constant with increasing radius, suggesting the presence of a dark matter (DM) halo. A tracer mass estimator was used to measure the mass at 42 kpc as (2.01+/-0.05)X10^{12} solar masses, for an isothermal potential, and (1.21+/-0.05)X10^{12} solar masses if the tracers followed the DM profile. Finally, it was estimated that M/L_{B}=22 - 44, consistent with the presence of considerable amounts of DM for a luminous galaxy. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2011-10-03 20:45:36.205
2

Globular Cluster Kinematics and Dark Matter Content of the Isolated Elliptical NGC 720

SCHEMBRI, AMANDA M 03 February 2011 (has links)
We examine the globular cluster system (GCS) of the isolated elliptical NGC 720 using the Gemini Multi-Object Spectrograph (GMOS) and have obtained spectra for 241 candidate globular clusters (GCs) extending to a galactocentric radius of 40 kpc. Of the 241 candidates, 120 are confirmed GCs, where 46 are members of the metal-poor, blue, population and 74 are members of the metal-rich, red, population. A (g-i)=0.50 colour split is used to identify the blue and red populations. We measure the full GCS to have a rotational velocity (Vrot) of 50 +/- 7 km/s with a position angle (PA) of 170 +/- 69 degrees. The red population has a Vrot = 97 +/- 14 km/s with PA = 147 +\- 18 degrees and the blue population has a Vrot = 79 +/- 7 km/s with PA = 89 +/- 18 degrees. The full GCS has an average velocity dispersion of 168 +/- 22 km/s, for the red population is 156 +/- 30 km/s and for the blue population is 181 +/- 33 km/s. The velocity dispersion pro file for all populations is constant with increasing radius, suggesting the presence of a dark matter halo. Using a tracer mass estimator, we have measured the mass out to 40 kpc as 1.8(+0.6/-0.1)x10^12 Msun for a potential which traces the dark matter pro file. We also estimate the M/L_V = 30 - 70. This study extends our survey of GCSs to isolated environments. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2011-01-31 11:30:54.389
3

High Resolution Spectral Models for Globular Clusters

Brierley, Mita Leela January 2010 (has links)
This thesis covers the development of high-resolution model spectra of simple-stellar-populations (SSP) to be used in the measurement of the ages, metallicities and chemical abundances of unresolved extragalactic globular clusters (GCs). The models are compared to low- and high-resolution spectra of GCs in the Milky Way and M31 galaxies, whose properties are already known, to establish the effectiveness of both the SSP spectral grid and of the direct spectral fitting procedure employed in this work. The model SSP spectra were created using Dotter et al. (2007) isochrones, populated using the flux derived from a grid of stellar spectra, weighted by the Kroupa (2001) mass function. Models with varying mass loss from the red giant branch and varying numbers of He-burning stars were generated. The spectral grid currently covers a parameter range of 2 to 15 Gyrs in age, and -2.5 to 0 dex in [Fe/H] at an [alpha/Fe] of +0.4 dex. Metallicities derived for Milky Way GCs from Lick index comparisons to the model grid are in good agreement with values in the literature. The stellar spectral grid, from which the GC spectra are generated, has been created using ATLAS9 and SYNTHE. The spectra are at a resolution of R = 100,000 and cover a wavelength range from 3000 - 9000 Angstroms. Extensive work was undertaken in creating appropriate lists of atomic and molecular transition oscillator strength (log gf) values for this spectral grid. An automated program was created to alter the strengths of millions of atomic transition lines in the Kurucz atomic line lists to fit a model spectrum of appropriate parameters to that of the red-giant star Arcturus and to the Solar spectrum at shorter wavelengths (3000 - 3727 Angstroms). Comparisons to these observed spectra were made manually for several molecular lines and band-heads, and log gf values changed en-mass for all the lines of a given molecular species. The SSP spectra were compared to low-resolution spectra of Milky Way GCs. Integrated-light spectra of a large number of Galactic GCs were obtained from three sources: the Schiavon et al. (2005) Library of Integrated Spectra of Galactic Globular Clusters, taken using the Ritchey-Chretien spectrograph on the Blanco 4m telescope at Cerro Tololo Inter-American Observatory; spectra obtained through private communication with M. Bessell using the Double Beam Spectrograph on the 2.3m telescope at Siding Springs Observatory; and spectra obtained using the Robert Stobie Spectrograph on the 11m diameter Southern African Large Telescope. With resolutions of 1500 to 2800, abundances of individual elements could not be determined, but overall ages and metallicities were derived. The model spectra were fitted to the observed spectra using a Chi^2 minimisation procedure over large wavelength regions to fully utilise the information available in the spectra. Derived metallicity values were in agreement with literature values. However, age determinations were not consistent with those derived from photometric methods and had large associated uncertainties. The lack of age information in the spectra at such resolutions is a similar result to that found by other studies using the Schiavon data (eg. Mendel et al., 2007; Koleva et al., 2008). The SSP spectral grid was used to determine ages, metallicities and individual elemental abundances of three clusters (GCM06, GC5 and GC10) in the outer halo of M31. High-resolution spectra from Keck-HIRES were obtained through private communication with D. Forbes. Age and metallicity determinations were made simultaneously by fitting un-blended FeI lines and the H-beta and H-gamma lines. Diagnostic analysis (such as that done by Colucci et al., 2009) and simultaneous fitting of the FeI lines alone gave unrealistic age values that tended towards the lower limits (2 Gyrs) of the age grid. The age and metallicities derived in this work for these clusters are consistent with those found by Alves-Brito et al. (2009) using the same data. Abundances of a number of elements were derived from the high-resolution spectra. An overall enhancement of alpha-elements (from measurements of Ca, Si and Ti) was seen in all three clusters ([alpha/Fe] = 0.67 +/- 0.2, 0.63 +/- 0.2 and 0.5 +/- 0.2 dex for clusters GCM06, GC5 and GC10 respectively) which is greater than that found for other M31 GCs (Puzia et al., 2005; Colucci et al., 2009). A depletion in Mg compared to the other alpha-elements is seen, in accordance with patterns seen in both Milky Way and M31 GCs (Gratton et al., 2004; Colucci et al., 2009). All three clusters show varying levels of enhancements and depletion in the other measured elements (C, Sc, V, Cr, Mn, Ni, Ba), none of which follow the trends seen in Milky Way clusters. Comparisons to high-resolution spectra of Milky Way GCs, for which abundance ratios are known from the measurement of individual stars, need to be made to establish the accuracy of this elemental-abundance analysis. Overall, the system presented in this thesis is well designed to be used in the analysis of integrated-light spectra from distant, unresolved GCs. The uncertainties in the derived ages are still larger than desired, but the metallicity determination is very consistent when tested against clusters of known metallicities.
4

A new reddening law for M4

Hendricks, Benjamin 14 December 2011 (has links)
We have used broad-band near infrared photometry in combination with optical Johnson-Cousins photometry to study the dust properties in the line of sight to the Galactic globular cluster M4. These data have been used to investigate the reddening effects in terms of absolute strength, distribution and variations across the cluster field, as well as the shape of the reddening law defined by the type of dust. All three aspects were poorly defined for this system and therefore there has been controversy about the absolute distance to the globular cluster which is closest to the sun. Here, we introduce a new method to determine the ratio of absolute to selective extinction (RV ) in the line of sight toward resolved stellar populations, which is known to be a useful indicator for the type of dust and therefore characterizes the applicable reddening law. This method is independent of age assumptions and appears to be significantly more precise and accurate than existing approaches. In a first application, we determine AV /E(B − V ) = 3.76 ± 0.07 (random error) for the dust in the line of sight to M4 for our set of filters. That corresponds to a dust-type parameter RV = 3.62 ± 0.07 in the Cardelli, Clayton & Mathis (1989) reddening law. With this value, the distance to M4 is found to be d = 1.80 ± 0.05 kpc, corresponding to a true distance modulus of (m − M)0 = 11.28 ± 0.06. These uncertainties do not include possible systematic errors in the theoretical isochrones. A reddening map for M4 has been created which reveals a spatial differential reddening of δE(B − V ) ≥ 0.2 mag across the field within 10′ around the cluster centre; this is about 50% of the total mean reddening, which has been determined to be E(B − V ) = 0.37 ± 0.01. In order to provide accurate zero points for the extinction coefficients of our photometric filters, a computer code has been written to investigate the impact of stellar parameters such as temperature, surface gravity and metallicity on the extinction properties and the necessary corrections in different bandpasses. Using both synthetic ATLAS9 spectra and observed spectral energy distributions, we found similar sized effects for the range of temperature and surface gravity typical of globular cluster stars: both cause a change of about 3% in the necessary correction factor for each filter combination. Interestingly, variations in the metallicity cause effects of the same order when the assumed value is changed from the solar metallicity ([Fe/H] = 0.0) to [Fe/H]=-2.5. Our analysis showed that the systematic differences between the flux of a typical main-sequence turnoff star in a metal poor globular cluster and a Vega-like star are even stronger (∼ 5%). We compared the results from synthetic spectra to those obtained with observed spectral energy distributions and found significant differences in detail for temperatures lower than 5 000 K. We have attributed these discrepancies to the inadequate treatment of molecular bands in the B filter within the ATLAS9 models. Accordingly, for those cooler temperatures we obtained corrections for temperature, gravity and metallicity primarily from the observed spectra. Fortunately, these differences do not affect our principal astrophysical conclusions in this study, which are based on stars hotter than 5 000 K. / Graduate
5

Spectral investigation of the globular cluster M30

Kilian Hikaru, Scheutwinkel January 2018 (has links)
Globular cluster studies suggest that a signature in the spectra of RGB stars in a globular cluster are anti-correlations in Mg-Al and Na-O. In this work, a small sample of 12 RGB stars of the globular cluster M30 is investigated using VLT-UVES high-resolution spectrograph. I use photometric stellar parameters to derive the abundances of Fe, Na, Al and Mg in SIU – a visual spectral analysis tool using 1-dimensional hydrostatic plane parallel MAFAGS atmospheres assuming mixing length convection and treating line formation in LTE. We found signatures of Mg-Al anti-correlation in M30 with the majority of the stars belonging to the intermediate polluted group. Oxygen couldn’t be measured but an indirect clue to the Na-O anti-correlation is found due to the direct correlation of Al-Na. These results are consistent with recent studies of other globular clusters.
6

Spectroscopy of the Globular Cluster M30

Scheutwinkel, Kilian Hikaru January 2019 (has links)
Globular Clusters contain very old metal-poor stars in different evolutionary stages evolved from the same primordial cloud. Signatures of atomic in stellar interiors are studied in the metal-poor GC M30. Furthermore, traces of cluster internal pollution depleting alpha elements e.g. Mg &amp; O are also found through high precision spectroscopy, which favors the existence of multiple stellar populations within a Globular Cluster. In this work, I use spectroscopic observations of 177 sample stars using the multi object spectrograph GIRAFFE and increasing the initial size of 12 of Scheutwinkel (2018) by 13 new UVES spectrograph sample stars of the Globular Cluster M30 ([Fe/H] = -2.3). The abundances of Fe, Ti, Mg &amp; Ba (GIRAFFE) and Fe, Na, Al &amp; Mg (UVES) are derived through the graphical spectrum analysis program SIU with VI broadband photometric stellar input parameters. The underlying line-formation theory is in LTE and uses 1-dimensional hydrostatic plan-parallel MAFAGS atmospheres with mixing length convection. We confirm an Al-Mg anti-correlation (Spearman ϱs= -0.583) and a correlation (Spearman ϱs= 0.641) between Al-Na in RGB stars as a direct result of being the partner elements of the depleted alpha elements Mg &amp; O caused through NeNa, ON and MgAl cycles. We find similar element ratios [X/Fe] as Carretta et al. (2018) &amp; O‘Malley et al. (2018) favoring the prior existence of multiple stellar populations within M30. Furthermore, we detected a signifcant restoration of abundances in the elements Fe, Mg &amp; Ba towards RGB stars. Fe, Mg and Ti are matching the predictions of the diffusion model T5.8 (Richard et al. 2005) reasonably well. For Ba, we have no current atomic diffusion modeling, so the validation of the results is not possible. The trend of Ti is v-shaped presumably due to stronger radiative accelaration effects for this element. Overall our relative abundance trends are consistent with other Globular Cluster studies by Gruyters et al. (2013&amp;2016), Korn et al. (2007) &amp; Lind (2007).
7

Formation of a globular cluster via gravitational capture

Hohertz, Jeremy D. 06 August 2008 (has links)
No description available.
8

A Study of Long Period Variables in the Globular Cluster M5

Royer, Robert L., III 16 August 2022 (has links)
No description available.
9

Formation of a globular cluster via gravitational capture

Hohertz, Jeremy D. January 2008 (has links)
Thesis (M.S.)--Miami University, Dept. of Physics, 2008. / Title from first page of PDF document. Includes bibliographical references (p. 39-40).
10

Long Period Variable Stars in the Globular Cluster M5 (NGC 5904)

Pellegrin, Kyle S. 12 August 2020 (has links)
No description available.

Page generated in 0.0855 seconds