Spelling suggestions: "subject:"interstellar must"" "subject:"interstellar just""
1 |
Dust Near Galactic HII RegionsSreenilayam, Gopika Krishnan 06 November 2014 (has links)
The distributions of physical properties, such as the temperature, mass, or density of the dust grains in molecular clouds near Galactic massive star forming regions are relatively poorly understood. These properties are significant in characterizing the early stages of high-mass star formation. The major goal of this thesis is to study the dust properties using continuum emission to learn about the effect on the dust of the extreme environments around high-mass star formation. For this we estimate mass, temperature and luminosity of the hot (??? 100 K), cool (20-40 K) and cold (??? 20 K) dust in the environs of Galactic H??? regions using Infrared Astronomy Satellite (IRAS) and James Clerk Maxwell (JCMT) Submillimeter Common User Bolometer Arrays (SCUBA & SCUBA-2) data.??????A total of 83 clouds has been examined using IRAS data. A two-component model Spectral Energy Distribution (SED) of hot and cool dust is used to fit the IRAS data. A three-component model SED is fitted to combined SCUBA and IRAS data for 15 clouds near H??? regions to measure the cold dust component. Surprisingly, the ratio of the bolometric luminosity of the cool dust to the hot dust appears to have the same value 2.8 in virtually all objects. The cool dust has typically four to five orders of magnitude greater mass than the hot dust. However, the mass in cold dust is much greater than the mass in cool and hot dust. These results may prove useful for using IR observations for estimating gas masses in extragalactic systems with active high-mass star formation.??? ???The clouds in the environments of H??? regions are modelled assuming a thermal equilibrium in large grains, ignoring small grains and polycyclic aromatic hydrocarbons (PAHs). A number of different models having varying density distributions and external stellar radiation are compared to the IRAS SEDs. The model results suggest that the assumptions are not valid. We need a larger amount of dust at 30 K than the models produced and in this thesis we propose a solution to this problem, which we have not yet tested. ??????The JCMT Submillimeter Common User Bolometer Array-2 (SCUBA-2) data of six complexes is used to analyze the cold dust near Galactic H??? regions. Dust physical property maps such as the temperature, optical depth, column density and visual extinction are constructed from the SCUBA-2 data at 450 and 850 ??m wavelengths. All of the molecular cloud cores are found to be at very low temperatures, down to 6 K at the centres, with increasing values toward the periphery. This is surprising because we expected some internal heating at the centre. The column densities at the centres of the clouds exceed 10???? cm????? and the derived peak visual extinction values of most of the cloud cores are above 100, indicating a highly opaque cloud centre. The observed clouds are massive with gas masses ranging from 10?? to over 10??? M???. All of these properties together suggest that the cores are high-mass starless cores (HMSCs), which are not hosting any massive stars at the centre. Note that there are only a few such observations, on these potential precursors of high-mass proto-stellar objects, by others. From the derived physical properties such as high column densities, high visual extinction and the cold temperatures toward the centres of the cores, we speculate that the all the sample cores are in a state of collapse. Note that the Jeans masses of the clouds are much less than their real cloud masses and the free fall times range from 10?? to 10??? years, confirming the potential state of the cores.
|
2 |
A new reddening law for M4Hendricks, Benjamin 14 December 2011 (has links)
We have used broad-band near infrared photometry in combination with optical Johnson-Cousins photometry to study the dust properties in the line of sight to the Galactic globular cluster M4. These data have been used to investigate the reddening effects in terms of absolute strength, distribution and variations across the cluster field, as well as the shape of the reddening law defined by the type of dust. All three aspects were poorly defined for this system and therefore there has been controversy about the absolute distance to the globular cluster which is closest to the sun.
Here, we introduce a new method to determine the ratio of absolute to selective extinction (RV ) in the line of sight toward resolved stellar populations, which is known to be a useful indicator for the type of dust and therefore characterizes the applicable reddening law. This method is independent of age assumptions and appears to be significantly more precise and accurate than existing approaches. In a first application, we determine AV /E(B − V ) = 3.76 ± 0.07 (random error) for the dust in the line of sight to M4 for our set of filters. That corresponds to a dust-type parameter RV = 3.62 ± 0.07 in the Cardelli, Clayton & Mathis (1989) reddening law. With this value, the distance to M4 is found to be d = 1.80 ± 0.05 kpc, corresponding to a true distance modulus of (m − M)0 = 11.28 ± 0.06. These uncertainties do not include possible systematic errors in the theoretical isochrones.
A reddening map for M4 has been created which reveals a spatial differential reddening of δE(B − V ) ≥ 0.2 mag across the field within 10′ around the cluster centre; this is about 50% of the total mean reddening, which has been determined to be E(B − V ) = 0.37 ± 0.01.
In order to provide accurate zero points for the extinction coefficients of our photometric filters, a computer code has been written to investigate the impact of stellar parameters such as temperature, surface gravity and metallicity on the extinction properties and the necessary corrections in different bandpasses. Using both synthetic ATLAS9 spectra and observed spectral energy distributions, we found similar sized effects for the range of temperature and surface gravity typical of globular cluster stars: both cause a change of about 3% in the necessary correction factor for each filter combination. Interestingly, variations in the metallicity cause effects of the same order when the assumed value is changed from the solar metallicity ([Fe/H] = 0.0) to [Fe/H]=-2.5. Our analysis showed that the systematic differences between the flux of a typical main-sequence turnoff star in a metal poor globular cluster and a Vega-like star are even stronger
(∼ 5%).
We compared the results from synthetic spectra to those obtained with observed spectral energy distributions and found significant differences in detail for temperatures lower than 5 000 K. We have attributed these discrepancies to the inadequate treatment of molecular bands in the B filter within the ATLAS9 models. Accordingly, for those cooler temperatures we obtained corrections for temperature, gravity and metallicity primarily from the observed spectra. Fortunately, these differences do not affect our principal astrophysical conclusions in this study, which are based on stars hotter than 5 000 K. / Graduate
|
3 |
Photoluminescence by Interstellar DustVijh, Uma Parvathy 05 October 2005 (has links)
No description available.
|
4 |
Scattering of light by dust in bipolar outflow sourcesQuinn, Dale Edward, Physics, Australian Defence Force Academy, UNSW January 2001 (has links)
Interstellar dust plays an important role in the physics of the interstellar medium, as well as the formation and evolution of stars. The presence of dust is often indicated in optical images by dark lanes which bisect spiral galaxies, or seen directly as reflection nebulosity around stars or emission nebulosity if sufficient heating is present. Of interest in this thesis is the dust that is associated with bipolar outflow sources. Bipolar outflows can occur in either evolved stars or in young stellar objects, and are so named because they consist of two lobes which are thought to be due to out-flowing dust and gas, with a dark lane between them due to thick dust in a circumstellar disk or shell which often blocks the light from the central star. The spatial distribution of the properties of dust around bipolar outflow sources has been examined using a combination of theoretical and observational techniques. To aid the interpretation of observations of bipolar outflow sources, we have modelled the wavelength dependence of light from 0.36 to 22\um, scattered by dust particles with varying characteristics. The results were then presented in the form of colour excess ratios. These model ratios can be applied to observations if the contribution due to the central star is able to be removed, such that all that remains in the image is the effect of the dust particles. The scattering of light by dust particles was modelled by varying six different characteristics: grain material, size (particle radius from 0.002 to 0.75\um), mantle temperatures and thicknesses, shape, and orientation. Of those characteristics, the largest variation in the colour excess ratios resulted from varying grain composition and size. Different scattering angles also produce a noticeable variation in the colour excess ratios, however the effect is difficult to distinguish from the general extinction due to dust around the source. Water ice mantles were also found to significantly change the colour excess ratios. Grain shape and orientation produced only small variations in the colour excess ratios. Three bipolar outflow sources were studied as part of this thesis, two evolved objects, OH~231.8+4.2 and Mz\,3, and the young T-Tauri object Rno\,91. The observations involved multi-wavelength imaging in the infrared, from which colours and colour excess ratios were obtained at various points of the bipolar outflows and then compared to the predictions made in the modelling. The most extensive data set analysed was seven images of the object OH~231.8+4.2 which were used in a multi-wavelength study in the infrared H to N bands (1.25--12\um). The central source position of the object has been confined to less than an arcsec using the longer wavelength images and an L--M colour image. The two peaks which dominate the lobes in the shorter wavelength images were found to be scattering peaks where the light from the central source is scattered from the walls of the lobes. The spatial distribution of water ice in the nebula has also been constrained to the circumstellar disk which has a torus or disk shape rather than being a spherical shell. The colour excess ratios derived for the nebula from the images also suggest slightly different dust properties between the circumstellar disk, lobe walls and within the lobe cavities. The young T-Tauri star Rno\,91 also contains ice, and was observed between J and L. The central star which illuminates the nebula was shown to be coincident with the brightest point in these images. Using colour excess ratio results for various parts of the nebula, it was shown that the dust close to the central star is likely to contain larger grains than the diffuse ISM, but with a similar composition. Moving away from the central star, the dust becomes more like that observed in the diffuse ISM. The presence of water ice on dust close to the central star was confirmed using images centred in the ice band. The protoplanetary bipolar outflow source Mz\,3 is slightly more evolved than OH 231.8+4.2, and does not have evidence of any water ice in the circumstellar disk. Images of this object were obtained between J and 10\um. The presence of warm dust throughout the inner bipolar lobes of this object is noticeable by the brightness of the lobes in the image at 10\um. Line profiles through the position of the central source of the 10\um\ image demonstrate that there is a circumstellar shell close to the central source which has an inner radius of $\lta\,375$\,AU. Colour excess ratio results for the bipolar lobes suggest that the dust associated with Mz\,3 is generally smaller than that found in the diffuse ISM. The properties of the dust in the bipolar lobes were also observed to be different to the dust closer to the central source and lying in the circumstellar disk. The small sizes for dust in Mz\,3 is consistent with the high velocity outflows that have been associated with the object.
|
5 |
Sources of Dust Extinction in Type Ia Supernovae : Measurements and constraints from X-rays to the InfraredJohansson, Joel January 2015 (has links)
The use of Type Ia supernovae (SNe Ia) as distance indicators is essential for studying the expansion history of the Universe and for exploring the nature of dark energy. However, a lack of understanding of the progenitor systems and the empirically derived colour-brightness corrections represent severe limitations for SNe Ia as cosmological probes. In this thesis, we study how dust along the line of sight towards SNe Ia affects the observed light over a wide range of wavelengths; from X-rays to infrared. Unless properly corrected for, the existence of intergalactic dust will introduce a redshift dependent magnitude offset to standard candle sources and bias the cosmological parameter estimates as derived from observations of SNe Ia. We model the optical extinction and X-ray scattering properties of intergalactic dust grains to constrain the intergalactic opacity using a combined analysis of observed quasar colours and measurements of the soft X-ray background. We place upper limits on the extinction AB(z = 1) < 0.10 - 0.25 mag, and the dust density parameter Ωdust < 10−5 − 10−4 (ρgrain/3 g cm−3), for models with RV < 12 − ∞, respectively. Dust in the host galaxies, and dust that may reside in the circumstellar (CS) environment, have important implications for the observed colours of SNe Ia. Using the Hubble Space Telescope and several ground based telescopes, we measure the extinction law, from UV to NIR, for a sample of six nearby SNe Ia. The SNe span a range of E(B − V ) ≈ 0.1 − 1.4 mag and RV ≈ 1.5 − 2.7, showing a diversity of dust extinction parameters. We present mid- and far-infrared (IR) observations for a number of SNe Ia, obtained with the Herschel Space Observatory and Spitzer Space Telescope, addressing CS dust as an explanation for “peculiar” extinction towards some SNe Ia. No excess IR emission is detected, limiting CS dust masses, Mdust < 10−5 solar masses. In particular, the timely appearance of SN 2014J in M82 - the closest SN Ia in several decades - allows for detailed studies, across an unprecedented wavelength range, of its lightcurve and spectral evolution along with the host galaxy and CS environment. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.</p>
|
6 |
Studies Of Diffuse Ultraviolet RadiationKarnataki, Abhay 09 1900 (has links) (PDF)
Ever since the first observations of diffuse ultraviolet radiation by Hayakawa et al. (1969) and Lillie & Witt (1976), there has been an effort to understand its distribution and its origin. Unfortunately, because of the difficulty of the observations and the faintness of the background, many of the early observations were conspicuous more by their disagreements than by the light they shed on the topic. The state of the observations and theories before 1990 have been reviewed by Bowyer (1991) and Henry (1991).
There has been significant progress in more recent years, particularly in the far ultraviolet (< 1200˚A) where Murthy et al. (1999) and Murthy & Sahnow (2004) have used spectroscopic data from the Voyager and FUSE (Far Ultraviolet Spectroscopic Explorer) spacecraft, respectively, to trace the radiation field over many different locations in the sky. There have also been a number of observations at longer wavelengths, most recently by the SPEAR instrument (Ryu et al. 2008, and references therein), but no systematic study of the UV background. The Galaxy Evolution Explorer (GALEX) offers us the opportunity to extend coverage of the diffuse background to a significant fraction of the sky with a sensitivity of better than 100 photons cm−2 sr−1 s−1 ˚A−1 . In this work, we will report on one such observation, that of the nebulosity observed near M82 by Sandage (1976). These GALEX observations are the first to probe the diffuse UV background at a spatial resolution comparable to other surveys of dust emission, notably the IR. We obtain a quantitative estimate of the Airglow, the Zodiacal Light and the Extragalactic Background Radiation. We have modelled the data with our monte carlo scattering simulation program, and inferred an estimate of albedo and scattering phase function parameter of the dust in Sandage region.
In this thesis the methods and results of these deductions are explained in detail.
|
7 |
Evolution des poussières interstellaires : apport des données de l'observatoire spatial Herschel / Evolution of interstellar dust in light of Herschel Space Observatory dataArab, Heddy 28 September 2012 (has links)
Les poussières interstellaires sont des particules solides dont les tailles sont comprises entre le nanomètre et le micron. Bien que représentant une faible proportion en masse du milieu interstellaire, elles jouent un rôle essentiel dans son évolution et de façon générale dans l'évolution des galaxies. Les poussières interstellaires sont observables dans les domaines UV et visible en extinction et de l'infrarouge au submillimétrique en émission. La conduite d'observations astrophysiques conjuguée au développement de modèles numériques de poussières et à l'étude d'analogues de grains en laboratoire permet d'affiner notre connaissance de ces particules solides. En particulier, il existe aujourd'hui de nombreuses preuves d'une évolution des grains dans le milieu interstellaire. Cependant, les processus physiques responsables de cette évolution sont aujourd'hui encore mal connus. Afin de comprendre comment évoluent les grains avec les propriétés physiques, il est nécessaire d'observer les poussières dans différents environnements. Les régions de photodissociation (PDR) sont des zones du milieu interstellaire présentant l'avantage de voir leur champ de rayonnement et leur densité locale varier sur de faibles échelles spatiales (~10- 20 arcsec). De plus, la grande variété de traceurs du gaz permet de contraindre efficacement les conditions physiques dans les PDR. Toutefois, l'émission des grains à l'équilibre thermique dans les PDR, qui domine l’émission dans l’infrarouge lointain, n'était que rarement résolue spatialement. Les instruments PACS et SPIRE, à bord de l'observatoire spatial Herschel, permettent aujourd'hui de disposer d'observations spectro-photométriques entre 70 et 500 µm, dont la résolution spatiale (comprise entre 5 et 35 arcsec) en fait des données idéales pour l'étude de l'évolution des poussières dans les PDR. Nous présentons l'analyse des observations Herschel de trois PDR, la Barre d'Orion, la Tête de Cheval et la NGC 7023 Est, caractérisées par des conditions physiques différentes. En combinant ces données aux observations Spitzer, nous pouvons étudier simultanément l'émission des poussières entre 3.6 et 500 µm à différentes positions de la PDR. Pour cela, des profils d'intensité reliant l'étoile à la PDR sont extraits à chaque longueur d'onde puis comparés spatialement. Un décalage de la position du pic d’émission dû au transfert radiatif est observé : plus la longueur d'onde est grande, plus le pic est éloigné de l'étoile excitatrice. Par contre, la comparaison entre les profils d'intensité observés et ceux calculés à partir d'un code de transfert de rayonnement couplé à un modèle de poussières correspondant aux propriétés du milieu interstellaire diffus révèle des différences liées à une évolution des grains pour chaque PDR étudiée. A la vue des écarts, nous concluons que l'abondance des PAH, plus petite composante de grains interstellaires, est plus faible dans les PDR que dans le milieu diffus suggérant la présence d'un phénomène de photo-destruction et/ou d'agrégation des PAH sur les gros grains dans les PDR. Ceci pourrait être accompagné d'une augmentation d'émissivité des gros grains liée à un mécanisme de coagulation. Les observations Herschel des PDR nous offrent également l'opportunité de nous intéresser aux variations du spectre des grains à l'équilibre thermique avec le rayonnement au travers des PDR. Un ajustement d'une loi de corps noir modifié permet d'extraire une épaisseur optique, une température et un indice spectral des grains. L'étude de ces deux derniers paramètres révèle une anticorrélation confirmant ainsi des travaux précédents. Cependant, la comparaison de la dépendance de la température et de l'indice spectral dans différentes régions montre différents comportements et exclut une dépendance universelle entre ces deux paramètres. Ce résultat ouvre de nouvelles perspectives quant à l'étude de l'évolution des poussières dans le milieu interstellaire. / Interstellar dust grains are nanometre to micrometer-sized particles. Although a weak proportion of the total interstellar mass is at solid state, dust plays a fundamental role in the evolution of the interstellar medium (ISM) and of the galaxy itself. Grains can be observed in the UV and visible wavelength through extinction whereas their emission is in the infrared to sub-millimetre range. Astrophysical observations combined to numerical models and laboratory studies of dust analogues improve our comprehension of the nature and the physics of interstellar grains. For example, evidence of dust evolution in the interstellar medium are now numerous, even if the physical processes responsible of this evolution are still poorly understood. Understanding how grains evolve with physical conditions requires observations of various environments. Photodissociation regions (PDRs) are zones of the ISM where the radiation field and the local density vary on short spatial scales (~10- 20 arcsec). Moreover the many gas tracers offer the opportunity to constraint efficiently the physical conditions within PDRs. Past missions such as ISO and Spitzer allow to study the evolution of dust in the near-Infrared range. At longer wavelengths, where the grains at thermal equilibrium with the radiation dominate the emission, instruments rarely resolved the spatial emission in PDRs. PACS and SPIRE instruments onboard Herschel Space Observatory provide spectro-photometric data between 70 and 500 µm. Their high spatial resolution (from 5 to 35 arcmin) makes these observations ideal for the study of dust evolution in PDRs. We present here an analysis of Herschel observations of three PDRs: the Orion Bar, the Horsehead and NGC 7023 East, characterized by different physical conditions. By combining these data with shorter wavelength observations from Spitzer, we can study the dust emission spectrum from 3.6 to 500 µm at different positions within the PDR. Intensity profiles are extracted along the PDR at each wavelength and spatially compared. We highlight a shift between the position of the emission peak: the longest the wavelength, the furthest the peak from the exciting star. This is a consequence of the radiative transfer in the PDR as shown from a plane parallel transfer code coupled with a dust model. The comparison between the observed and the modelled profiles computed with typical diffuse dust abundances and properties shows differences linked to dust evolution in each studied PDR. These discrepancies between the data and the model indicate a lower Polycyclic Aromatic Hydrocarbon (PAH, the smallest dust component) abundance in the PDR than in the diffuse medium suggesting photo-destruction and/or PAH sticking on larger grains. This could be accompanied by an increase of big grain emissivity linked to coagulation. Herschel's observations of PDR also offer the chance to probe the variations of the grains at thermal equilibrium with the radiation through PDRs. A modified blackbody fit allows to compute an optical depth, a temperature and a dust spectral emissivity index. Those two last parameters are clearly anticorrelated, which confirms previous works. However, comparing the temperature and emissivity index dependence in different regions shows various behaviours, which excludes a universal law between these parameters. This result opens new perspectives in the study of the dust evolution in the interstellar medium.
|
8 |
Caractérisation et étalonnage de la caméra de l'expérience ballon PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium) / Caracterization and calibration of the camera of the PILOT balloon born experiment (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium)Buttice, Vincent 30 September 2013 (has links)
PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium) est une expérience embarquée en ballon stratosphérique destinée à la mesure de l'émission polarisée de notre galaxie dans le submillimétrique. La charge pointée de PILOT est composée d'un télescope au foyer duquel est placée une caméra embarquant 2048 bolomètres, refroidis à 300 mK, mesurant dans deux bandes spectrales (240 µm et 550 µm) et deux polarisations. La détection de la polarisation est réalisée à l'aide d'un polariseur placé à 45° dans le faisceau, le décomposant en deux composantes polarisées orthogonales chacune détectée par un bloc détecteur, et d'une lame demi-onde rotative. L'Institut d'Astrophysique Spatiale (Orsay, France) est responsable de la réalisation, de l'intégration, des tests et de l'étalonnage spectral de la caméra. Pour cela deux bancs de mesures sont développés, un pour les essais d'imagerie et de polarisation, et un pour l'étalonnage spectral. L'expérimentation permet de valider l'alignement des optiques froides, de caractériser la qualité optique des images, de caractériser les réponses temporelles et en intensité des détecteurs, et de mesurer la réponse spectrale de la caméra. Un modèle photométrique de l'instrument est développé simulant les différentes configurations pour les essais d'étalonnage spectral, d'imagerie en laboratoire, et en vol, ceci afin d'estimer la puissance totale reçue par chaque pixel du détecteur de chaque configuration. Cette puissance totale est issue de l'émission thermique de l'instrument, de l'atmosphère et des sources observées en vol ou de l'environnement du laboratoire. Une campagne de tests a permis de caractériser et d'étalonner la caméra de l'expérience PILOT. Les premières images dans le domaine du submillimétrique ont été révélées, et les premières réponses spectrales mesurées. Suite à la caractérisation et l'étalonnage spectral, la caméra est alignée avec le miroir primaire sur la nacelle CNES pour des caractérisations et des étalonnages en polarisation de l'instrument complet. Le premier vol est prévu pour le milieu de l'année 2014. / The Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon borne experiment designed to measure the polarized emission from dust grains in the galaxy in the submillimeter range. The payload is composed of a telescope at the optical focus of which is placed a camera using 2048 bolometers cooled to 300 mK. The camera performs polarized optical measurements in two spectral bands (240 µm and 550 µm). The polarization measurement is based on a cryogenic rotating half-wave plate and a fixed mesh grid polarizer placed at 45° separating the beam into two orthogonal polarized components each detected by a detector array. The Institut d'Astrophysique Spatiale (Orsay, France) is responsible for the design, integration, tests and spectral calibration of the camera. Two optical benches have been designed for its imaging and polarization characterization and spectral calibration. Theses setups allow to validate the alignment of the camera cryogenic optics, to check the optical quality of the images, to characterize the time and intensity response of the detectors, and to measure the overall spectral response. A numerical photometric model of the instrument was developed for the optical configuration during calibration tests (spectral), functional tests (imager) on the ground, and flight configuration at the telescope focus, giving an estimate of the optical power received by the detectors for each configuration. The tests campaign validates the PILOT camera characterization and calibration. It delivered the first submillimeter images and the first spectral responses. Next, the camera will be aligned and integrated with the primary mirror of the telescope on the CNES gondola, for characterization and optical polarization calibration of the complete instrument. The first flight is now planned for mid 2014.
|
9 |
Analysis of the Intrinsic Visible V–Mid-infrared L Colors of Galaxies at Redshifts z < 2January 2019 (has links)
abstract: Ultraviolet and optical light from stars is reddened and attenuated by interstellar dust, where different sightlines across a galaxy suffer varying amounts of extinction. Tamura et al. (2009) developed an approximate method to correct for dust extinction, dubbed the “βV method,” by comparing the observed to an empirical estimate of the intrinsic flux ratio of visible and ∼3.5 μm emission. Moving beyond that empirical approach, through extensive modeling, I calibrated the βV -method for various filters spanning the visible through near infrared wavelength range, for a wide variety of simple stellar populations (SSP) and composite stellar populations (CSP). Combining Starburst99 and BC03 models, I built spectral energy distributions of SSP and CSP for various realistic star formation histories, while taking metallicity evolution into account. I convolved various 0.44–1.65 μm filter throughput curves with each model spectral energy distribution (SED) to obtain intrinsic flux ratios, βλ,0. To validate the modeling, I analyzed spatially resolved maps for the observed V- and g-band to 3.6 μm flux ratios and the inferred dust-extinction values AV for a sample of 257 nearby galaxies. Flux ratio maps are constructed using point-spread function-matched mosaics of Sloan Digitial Sky Survey g- and r-band images and Spitzer/InfraRed Array Camera 3.6μm mosaics, with all of the pixels contaminated by foreground stars or background objects masked out. Dust-extinction maps for each galaxy were created by applying the βV -method. The typical 1σ scatter in βV around the average, both within a galaxy and in each morphological type bin, is ∼20%. Combined, these result in a ∼0.4 mag scatter in AV. βV becomes insensitive to small-scale variations in stellar populations once resolution elements subtend an area larger than 10 times that of a typical giant molecular cloud. I find noticeably redder V−3.6 μm colors in the center of star-forming galaxies and galaxies with a weak AGN. The derived intrinsic V −3.6 μm colors for each Hubble type are generally consistent with the modeling. Finally, I discuss the applicability of the βV dust-correction method to more distant galaxies, for which large samples of well-matched Hubble Space Telescope rest-frame visible and James Webb Space Telescope rest-frame ∼3.5μm images will become available in the near future. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2019
|
10 |
Cosmic structure formation on small scales: From non-linear galaxy clustering to the interstellar mediumWibking, Benjamin Douglas 17 October 2019 (has links)
No description available.
|
Page generated in 0.0891 seconds