• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le gaz dans les galaxies spirales de l'univers local : modélisation d'observations radio et étude des lois de formation stellaire dans les galaxies perturbées / The gas of spirals galaxies in the local universe : simulations of radio observations and study of the star formation laws in perturbed galaxies

Nehlig, François 28 September 2015 (has links)
Le milieu interstellaire (MIS) des galaxies spirales joue un rôle primordial dans l'évolution des galaxies. Nous nous sommes attachés au cours de cette thèse à caractériser le lien existant entre le MIS dans les galaxies spirales et l'efficacité de la formation stellaire. Dans une première partie, nous étudions la morphologie du disque de gaz atomique de la galaxie spirale fortement inclinée NGC 2683, à l'aide d'un modèle de déprojection de cubes de données radio. Cette étude permet notamment de rendre compte de l'histoire d'accrétion de gaz dans ce système. Dans une seconde partie, nous nous intéressons aux conséquences de la compression du MIS qui peut avoir lieu dans des galaxies situées dans des environnements denses. Notre approche fait usage à la fois de données multilongueur d'onde de galaxies subissant la compression de leur MIS (avec notamment de nouvelles observations millimétriques), de simulations dynamiques de ces galaxies ainsi que d'un modèle analytique donnant accès à la physique aux petites échelles. Notre thèse montre la complémentarité de l'utilisation d'observations, de la modélisation de ces observations et de simulations dynamiques dans l'étude du MIS des galaxies spirales. / The interstellar medium (ISM) of spiral galaxies plays a key role in galaxy evolution. Throughout this thesis we characterized the link between the ISM of spiral galaxies and the star formation efficiency. In a first part, we studied the atomic gas distribution of the highly inclined spiral galaxy NGC 2683, with a deprojection model of radio data cubes. This study gives insight on the gas accretion history in this galaxy. In a second part of this work, we examined the compression effects of the ISM, which occurs in galaxies located in dense environment. Our approach makes use of both a multiwavelength data set of galaxies enduring ISM compression (including new millimeter observations), and dynamical simulations of these galaxies combined with an analytical model which gives access to small scale physics. Our thesis shows the complementarity of high quality observations together with modelisation of these observations and dynamical simulations in the study of the ISM in spiral galaxies.
2

State of the gas in intense lensed starbursts

George, Richard David January 2015 (has links)
The most intensely star-forming galaxies lie at z ∼ 2 and are thought to be the progenitors of the most massive galaxies today, yet study of this important population has been hampered by vast quantities of dust, making them almost invisible in the optical and ultraviolet (UV) regimes, and by the low sensitivity and angular resolution of many infrared (IR) facilities. Chapter 2 describes the use of the flux and angular extent boost provided by strong gravitational lensing in the detailed study of individual high-redshift dusty star-forming galaxies (DSFGs). The low number density of such systems has been overcome by recent wide area far-infrared (FIR)–mm surveys, and a sample of candidate systems which are bright enough to study with single-dish FIR telescopes are assembled from these surveys. The chapter further describes spectra of these galaxies obtained using the the Spectral and Photometric Imaging REceiver (SPIRE; Griffin et al. 2010) Fourier transform spectrometer (FTS) on board the Herschel Space Observatory (Pilbratt et al. 2010), exploiting the increased flux densities to search for FIR atomic and ionic spectral lines: important coolants of warm gas surrounding star-formation regions. Chapter 3 describes the first “blind” redshift obtained using Herschel, via the detection of [C ii] 158 μm in one of our spectra. Confirmation of this redshift was provided by detection of CO lines with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Plateau de Bure Interferometer (PdBI), and along with multi-wavelength photometric follow-up, allowed a characterisation of the galaxy, indicating both a merger-driven starburst and an active galactic nucleus (AGN) within the system. Chapter 4 describes the first detection of a massive outflow of molecular gas at high-redshift. Stacking five repeat spectra of the Cosmic Eyelash, one of the best-studied strongly lensed DSFGs, one of the massive star-forming clumps is shown to drive this outflow, albeit likely at a velocity lower than that required to become unbound from the hosting gravitational potential well. Chapter 5 describes line measurements and spectral energy distribution (SED) fitting from the full set of spectra and Herschel PACS mini scan maps. The spectra are stacked to search for faint lines, and compared to a detailed interstellar medium (ISM) model to determine average physical properties of the star-forming gas. Photodissociation region (PDR) properties are found to be similar to those derived using other models, however a cosmic ray ionisation rate of 103 times that of the Milky Way, expected in galaxies of this type cannot reproduce the observed line ratios, in particular the low [O i] 63 μm flux. Chapter 6 finally describes the conclusions drawn from the work presented in this thesis and how these data and analysis add to our knowledge and interpretation of high-redshift DSFGs.
3

Studies Of Diffuse Ultraviolet Radiation

Karnataki, Abhay 09 1900 (has links) (PDF)
Ever since the first observations of diffuse ultraviolet radiation by Hayakawa et al. (1969) and Lillie & Witt (1976), there has been an effort to understand its distribution and its origin. Unfortunately, because of the difficulty of the observations and the faintness of the background, many of the early observations were conspicuous more by their disagreements than by the light they shed on the topic. The state of the observations and theories before 1990 have been reviewed by Bowyer (1991) and Henry (1991). There has been significant progress in more recent years, particularly in the far ultraviolet (< 1200˚A) where Murthy et al. (1999) and Murthy & Sahnow (2004) have used spectroscopic data from the Voyager and FUSE (Far Ultraviolet Spectroscopic Explorer) spacecraft, respectively, to trace the radiation field over many different locations in the sky. There have also been a number of observations at longer wavelengths, most recently by the SPEAR instrument (Ryu et al. 2008, and references therein), but no systematic study of the UV background. The Galaxy Evolution Explorer (GALEX) offers us the opportunity to extend coverage of the diffuse background to a significant fraction of the sky with a sensitivity of better than 100 photons cm−2 sr−1 s−1 ˚A−1 . In this work, we will report on one such observation, that of the nebulosity observed near M82 by Sandage (1976). These GALEX observations are the first to probe the diffuse UV background at a spatial resolution comparable to other surveys of dust emission, notably the IR. We obtain a quantitative estimate of the Airglow, the Zodiacal Light and the Extragalactic Background Radiation. We have modelled the data with our monte carlo scattering simulation program, and inferred an estimate of albedo and scattering phase function parameter of the dust in Sandage region. In this thesis the methods and results of these deductions are explained in detail.
4

MODELING IONIZED AND MOLECULAR REGIONS OF THE INTERSTELLAR MEDIUM USING THE SPECTRAL SYNTHESIS CODE CLOUDY

Wagle, Gururaj 01 January 2014 (has links)
The focus of this dissertation is to study the star-forming regions of the interstellar medium (ISM), using two very diverse environments: the Polaris Flare, high-galactic latitude, cirrus cloud complex consisting of several starless molecular cores with no nearby hot stars; and the Orion Nebula, which is the closest massive star forming region. The two environments provide a wide range of physical conditions. It is commonly assumed that the Herschel far-infrared (FIR) fluxes are a good measure of column density, hence, mass of interstellar clouds. We find that the FIR fluxes are insensitive to the column density if AV ≳ 2. The Polaris Flare has been previously observed with the Herschel Space Telescope. We use Cloudy to model the molecular cores in MCLD 123.5+24.9 of the Polaris Flare. The Polaris Flare, 150 pc distant, is well within the Galactic disc. There are no nearby hot stars. Therefore, the cloud is illuminated by an external far-ultraviolet (FUV) flux (6-13 eV) due to the galactic background interstellar radiation field (ISRF). The dust grains absorb the incident FUV flux and re-emit in the FIR continuum emission. We use detailed grain models that suggest that the grains in dense regions are coated with water and ammonia ices, increasing their sizes and opacities. In our models, dust temperatures decline rapidly into the cloud. Therefore, the cloud interiors contribute very little additional FIR flux, leading to an underestimate of inferred column density. Cloudy also predicts mm-wavelength molecular lines for comparison with published observations. Our models suggest that at low temperatures (≲ 20K), molecules freeze-out on grain surfaces, and desorption by cosmic rays becomes important. Our models of inter-core regions in MCLD 123.5+24.9 significantly under predict molecular line strengths unless the gas is clumped into high-density regions. We use Cloudy to construct a detailed model of the Orion H ii region. This study is an improvement over the work of Baldwin et al. 1991 with the new atomic data and stellar atmosphere models, and a wealth of archival observational data obtained over last two decades. We use collisionally excited lines to determine the elemental abundance of the region.
5

Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

Pon, Andrew Richard 25 April 2013 (has links)
Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects. Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude. Molecular tracers of turbulent energy dissipation. Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid-to-high rotational transitions of CO (e.g., J = 8 to 7), should be dominated by shocked gas emission and should trace the turbulent energy being dissipated in molecular clouds. Orion-Eridanus superbubble. The nearby Orion star forming region has created a large bubble of hot plasma in the local interstellar medium referred to as the Orion-Eridanus superbubble. This bubble is unusual in that it is highly elongated, is believed to be oriented roughly parallel to the galactic plane, and contains bright filamentary features on the Eridanus side. I fit models for a wind driven bubble in an exponential atmosphere to the Orion-Eridanus superbubble and show that the elongation of the bubble cannot be explained by such a model in which the scale height of the galactic disk is the typical value of 150 pc. Either a much smaller scale height must be adopted or some additional physics must be added to the model. I also show that the Eridanus filaments cannot be equilibrium objects ionized by the Orion star forming region. / Graduate / 0606 / andyrpon@gmail.com
6

Ανίχνευση και μελέτη εξωγαλαξιακών υπολειμμάτων υπερκαινοφανών σε πολλαπλά μήκη κύματος / Detection and study of extragalactic multi-wavelength supernova remnants

Λεωνιδάκη, Ιωάννα 28 February 2013 (has links)
Η παρούσα διατριβή παρουσιάζει τα αποτελέσματα μιας συστηματικής έρευνας των πληθυσμών Υπολειμμάτων Υπερκαινοφανών (Υ/Υ) σε έξι κοντινούς γαλαξίες (NGC 2403, NGC 3077, NGC 4214, NGC 4395, NGC 4449 και NGC 5204) βασισμένη σε αρχειακά δεδομένα του δορυφόρου ακτίνων-Χ Chandra, και σε βαθειές οπτικές παρατηρήσεις με τα στενά φίλτρα Hα (λ 6563) και [SΙΙ] (λλ 6716, 6731) καθώς και φασματοσκοπικές παρατηρήσεις. Η ταξινόμηση των Υ/Υ επιλεγμένων στις ακτίνες-Χ βασίστηκε στα μαλακά, θερμικά φάσματα (kT < 3 keV) των πηγών στις ακτίνες-Χ ή στα χρώματά τους στις ακτίνες-Χ. Αντίστοιχα, η ταξινόμηση των οπτικών Υ/Υ βασίστηκε στο καθιερωμένο κριτήριο του λόγου των γραμμών εκπομπής [SΙΙ](λλ 6716, 6731)/Hα > 0.4. Εντοπίστηκαν 37 θερμικά Υ/Υ στις ακτίνες-Χ, 30 εκ των οποίων είναι νέες ανακαλύψεις και ~400 (~350 από αυτά είναι νέες ανιχνεύσεις) φωτομετρικά Υ/Υ, για 67 από τα οποία πιστοποιήθηκε φασματοσκοπικά η φύση τους ως Υ/Υ. Πολλοί από τους γαλαξίες στο δείγμα μας μελετώνται για πρώτη φορά στις ακτίνες-Χ (NGC 4214, NGC 4395 και NGC 5204) ή στο οπτικό μέρος του φάσματος (NGC 4395, NGC 3077) με συστηματικό τρόπο, καταλήγοντας στην ανακάλυψη αρκετών νέων Υ/Υ. Σε πολλές περιπτώσεις, η ταξινόμηση των πηγών ως Υ/Υ στις ακτίνες-Χ ή στο οπτικό μέρος του φάσματος επιβεβαιώνεται από ομόλογα Υ/Υ που έχουν ανιχνευθεί σε άλλα μήκη κύματος, δείχνοντας ότι οι μέθοδοι ανίχνευσης που χρησιμοποιούμε είναι αξιόπιστες. Συζητάμε τις ιδιότητες (π.χ. φωτεινότητα, θερμοκρασία, πυκνότητα, ταχύτητα σοκ) των Υ/Υ σε διάφορους τύπους γαλαξιών και ως εκ τούτου διαφορετικά περιβάλλοντα, προκειμένου να δούμε την εξάρτησή τους από το μεοσαστρικό μέσο. Συσχετίζουμε παραμέτρους των ανιχνευμένων οπτικών Υ/Υ (λόγος [SΙΙ]/Hα, φωτεινότητα) με τις παραμέτρους των αντίστοιχων Υ/Υ στις ακτίνες-Χ (θερμοκρασία, φωτεινότητα, πυκνότητα) προκειμένου να κατανοήσουμε την εξέλιξή τους. Μερικά από τα πιο ενδιαφέροντα αποτελέσματα αυτής της έρευνας είναι τα ακόλουθα: α) Βρίσκουμε ότι τα Υ/Υ που είναι ανιχνευμένα στις ακτίνες-Χ και βρίσκονται σε άμορφους γαλαξίες φαίνεται να είναι πιο λαμπρά από εκείνα στους σπειροειδείς γαλαξίες. Αποδίδουμε αυτό το γεγονός στη χαμηλότερη μεταλλικότητα των άμορφων γαλαξιών από αυτή των σπειροειδών (η χαμηλότερη μεταλλικότητα δημιουργεί πρόγονους αστέρες μεγαλύτερης μάζας) ή στις υψηλότερες τοπικές πυκνότητες που παρατηρούνται στο μεσοαστρικό μέσο των άμορφων γαλαξιών, β) Η σύγκριση του αριθμού των παρατηρούμενων λαμπρών Υ/Υ στις ακτίνες-Χ με τον αριθμό αυτών που αναμένονται με βάση τις κατανομές φωτεινότητας των Υ/Υ στις ακτίνες-Χ στα Νέφη του Μαγγελάνου και στον M33, δείχνουν ότι κατανομές φωτεινότητας των Υ/Υ μεταξύ σπειροειδών και άμορφων γαλαξιών είναι διαφορετικές, από αυτές που αφορούν τα Υ/Υ στους άμορφους γαλαξίες και τείνουν να είναι πιο επίπεδες, γ) Βρίσκουμε ότι υπάρχει διαφορά στους λόγους [NΙΙ]/Hα των Υ/Υ μεταξύ διαφορετικών τύπων γαλαξιών, το οποίο κατά πάσα πιθανότητα οφείλεται σε διαφορές στη μεταλλικότητά τους και δ) Υπάρχουν ισχυρές ενδείξεις για μια γραμμική σχέση μεταξύ του αριθμού των λαμπρών Υ/Υ στο οπτικό και στις ακτίνες-Χ και του ρυθμού αστρογένεσης των γαλαξιών του δείγματος. / This thesis presents the results of a comprehensive investigation of the Supernova Remnant (SNR) populations in six nearby galaxies (NGC 2403, NGC 3077, NGC 4214, NGC 4395, NGC 4449 and NGC 5204) based on Chandra archival data and deep optical narrow-band Hα and [SΙΙ] images, as well as spectroscopic observations. The classification of X-ray emitting SNRs was based on their soft thermal spectra (kT < 3 keV) or their X-ray colors and for optically-emitting SNRs on the well-established emission-line flux criterion of [SΙΙ](λλ 6716, 6731)/Hα(λ 6563) > 0.4. We have identified 37 X-ray selected thermal SNRs, 30 of which are new discoveries and ~400 optical SNRs (~350 are new detections), for 67 of which we spectroscopically verified their shock-excited nature. Many of the galaxies in our sample are studied for the first time in the X-ray (NGC 4214, NGC 4395, and NGC 5204) or optical (NGC 4395, NGC 3077) band in a self-consistent way, resulting in the discovery of many new SNRs. In many cases, the X-ray and optical classifications are confirmed based on the identification of SNR counterparts in other wavelengths, giving us confidence that the detection methods we use are robust. We discuss the properties (e.g. luminosity, temperature, density, shock velocity) of the X-ray/optically detected SNRs in different types of galaxies and hence different environments, in order to address their dependence on their interstellar medium. We compare optical ([SΙΙ]/Hα ratio, luminosity) and X-ray parameters (temperature, luminosity, density) of the detected SNRs, in order to understand their evolution and investigate possible selection effects. The most intriguing results of this survey are the following: a) We find that X-ray selected SNRs in irregular galaxies appear to be more luminous than those in spirals. We attribute this either to the lower metallicities and therefore more massive progenitor stars of irregular galaxies or to the higher local densities of the interstellar medium, b) A comparison of the numbers of observed luminous X-ray selected SNRs with those expected from the luminosity functions of X-ray SNRs in the Magellanic Clouds and M33 suggest different luminosity distributions between the SNRs in spiral and irregular galaxies, with the latter tending to have flatter distributions, c) We find that there is a difference in [NΙΙ]/Hα line ratios of the SNR populations between different types of galaxies which is the result of the low metalicity of irregular galaxies, and d) We find evidence for a linear relation between the number of luminous optical or X-ray SNRs and Star Formation Rate in our sample of galaxies.
7

A Study of Superbubbles in the ISM : Break-Out, Escape of LYC Photons and Molecule Formation

Roy, Arpita January 2016 (has links) (PDF)
Multiple coherent supernova explosions (SNe) in an OB association can produce a strong shock that moves through the interstellar medium (ISM). These shocks fronts carve out hot and tenuous regions in the ISM known as superbubbles. The density contour plot at three different times (0.5 Myr (left panel), 4 Myr (middle panel), 9.5 Myr (right panel)) showing different stages of superbubble evolution for n0 = 0.5 cm−3, z0 = 300 pc, and for NOB = 104. This density contour plot is produced using ZEUS-MP 2D hydrodynamic simulation with a resolution of 512 × 512 with a logarithmic grid extending from 2 pc to 2.5 kpc. For a detailed description of this figure, see Roy et. al., 2015. The evolution of a superbubble is marked by different phases, as it moves through the ISM. Consider an OB association at the center of a disk galaxy. Initially the distance of the shock front is much smaller than the disk scale height. The superbubble shell sweeps up the ISM material, and once the amount of swept up material becomes comparable to the ejected material during SNe, the superbubble enters a self-similar phase (analogous to the Sedov-Taylor phase of individual SNe). As the superbubble shell sweeps up material, its velocity decreases, and thus the corresponding post-shock temperature drops. At a temperature of ∼ 2 × 105 K (where the cooling function peaks), the superbubble shell becomes radiative and starts losing energy via radiative cooling. This radiative phase is shown in the left panel of Figure 1. The superbubble shell starts fragmenting into clumps and channels due to Rayleigh-Taylor instabilities (RTI) (which is seeded by the thermal instability; for details see Roy et. al., 2013) when the superbubble shell crosses a few times the scale height. This is represented in the middle panel of the same figure. At a much later epoch, RTI has a strong effect on the shell fragmentation and the top of the bubble is completely blown off (the right panel). In the first chapter of the thesis (reported in Sharma et. al., 2014), we show using ZEUS-MP hydrodynamic simulations that an isolated supernova loses almost all its mechanical energy within a Myr whereas superbubbles can retain up to ∼ 40% of the input energy over the lifetime of the starcluster (∼ few tens of Myr), consistent with the analytic estimate of the second chapter. We also compare different recipes (constant luminosity driven model (LD model), kinetic energy driven model (KE model) to implement SNe feedback in numerical simulations. We determine the constraints on the injection radius (within which the SNe input energy is injected) so that the supernova explosion energy realistically couples to the interstellar medium (ISM). We show that all models produce similar results if the SNe energy is injected within a very small volume ( typically 1–2 pc for typical disk parameters). The second chapter concentrates on the conditions for galactic disks to produce superbubbles which can give rise to galactic winds after breaking out of the disk. The Kompaneets formalism provides an analytic expression for the adiabatic evolution of a superbubble. In our calculation, we include radiative cooling, and implement the supernova explosion energy in terms of constant luminosity through out the life-time of the OB stars in an exponentially stratified medium (Roy et. al., 2013). We use hydrodynamic simulations (ZEUS-MP) to determine the evolution of the superbubble shell. The main result of our calculation is a clear demarcation between the energy scales of sources causing two different astrophysical phenomenon: (i) An energy injection rate of ∼ 10−4 erg cm−2 s−1 (corresponding Mach number ∼ 2–3, produced by large OB associations) is relevant for disk galaxies with synchrotron emitting gas in the extra-planar regions. (ii) A larger energy injection scale ∼ 10−3 erg cm−2 s−1, or equivalently a surface density of star formation rate ∼ 0.1 M⊙ yr−1 kpc−2 corresponding to superbubbles with high Mach number (∼ 5–10) produces galactic-scale superwinds (requires superstar clusters to evolve coherently in space and time). The stronger energy injection case also satisfies the requirements to create and maintain a multiphase halo (matches with observations). Roy et. al., 2013 also points out that Rayleigh-Taylor instability (RTI) plays an important role in the fragmentation of superbubble shell when the shell reaches a distance approximately 2–3 times the scale-height; and before the initiation of RTI, thermal instability helps to corrugate the shell and seed the RTI. Another important finding of this chapter is the analytic estimation of the energetics of superbubble shell. The shell retains almost ∼ 30% of the thermal energy after the radiative losses at the end of the lifetime of OB associations. The third chapter considers the escape of hydrogen ionizing (Lyc) photons arising from the central OB-association that depends on the superbubble shell dynamics. The escape fraction of Lyc photons is expected to decrease at an initial stage (when the superbubble is buried in the disk) as the dense shell absorbs most of the ionizing photons, whereas the subsequently formed channels (created by RTI and thermal instabilities) in the shell creates optically thin pathways at a later time (∼ 2–3 dynamical times) which help the ionizing photons to escape. We determine an escape fraction (fesc) of Lyc photons of ∼ 10 ± 5% from typical disk galaxies (within 0 ≤ z (redshift) ≤ 2) with a weak variation with disk masses (reported in Roy et. al., 2015). This is consistent with observations of local galaxies as well as constraints from the epoch of reionization. Our work connects the fesc with the fundamental disk parameters (mid-plane density (n0), scale-height (z0)) via a relation that fescαn20z03 (with a ≈ 2.2) is a constant. In the fourth chapter, we have considered a simple model of molecule formation in the superbubble shells produced in starburst nuclei. We determine the threshold conditions on the disk parameters (gas density and scale height) for the formation of molecules in superbubble shells breaking out of disk galaxies. This threshold condition implies a gas surface density of ≥ 2000 M⊙ pc−2, which translates to a SFR of ≥ 5 M⊙ yr−1 within the nuclear region of radius ∼ 100 pc, consistent with the observed SFR of galaxies hosting molecular outflows. Consideration of molecule formation in these expanding superbubble shells predicts molecular outflows with velocities ∼ 30–40 km s−1 at distances ∼ 100–200 pc with a molecular mass ∼ 106–107 M⊙, which tally with the recent ALMA observations of NGC 253. We also consider different combinations of disk parameters and predict velocities of molecule bearing shells in the range of ∼ 30–100 km s−1 with length scales of ≥ 100 pc, in rough agreement with the observations of molecules in NGC 3628 and M82 (Roy et. al., 2016, submitted to MNRAS).
8

Star formation in LITTLE THINGS dwarf galaxies

Ficut-Vicas, Dana January 2015 (has links)
In this thesis we test and expand our current knowledge of Star Formation Laws (SF laws) in the extreme environment of dwarf irregular galaxies. We focus on the SF characteristics of our 18 galaxies sample, extending current investigations of the Schmidt-Kennicutt law to the low luminosity, low metallicity regime. The Hi data used in this project have been observed, calibrated and imaged according to the LITTLE THINGS Survey prescription to which I brought my own contribution as a member of the team. Apart from high resolution, VLA data in B, C and D array configurations, this project makes use of an extensive set of multi- wavelength data (H , FUV, 24 m, 3.6 m, V-band and K-band). Molecular gas in dwarfs is very difficult to observe, mainly because due to the low metallicity environment, we lose our only molecular tracer, the CO which becomes under luminous. Therefore the gas distribution is represented by Hi gas only. We create our Star Formation Rate (SFR) maps mainly based on FUV maps because our analysis shows that FUV is the SF tracer that allows us the most extensive sampling of the SFR surface density (SFRD) and Hi surface density relation. The main results of our study are: Whereas in spiral galaxies Bigiel et al. (2008) have found a one to one relation between star formation rate and molecular gas and no relation between the SFR and the neutral gas, in a small sample of dwarfs as well as in the outskirts of spiral galaxies Bigiel et al. (2010b) has found that SFRD does correlate with Hi surface density. We confirm the existence of the SFRD vs. Hi surface density relation in dwarf irregular galaxies and a linear fitting through all our data (all 18 galaxies combined) yields a power law relation ΣSFR ∝ Σ1.87±0.3/HI . We find that the interiors of Hi shells, at 400 pc scales, become resolved and show up in SFRD versus Hi surface density plots although within the shell interior we have SFRD values but no Hi surface density related to them. Thus, the points originating from those regions contribute significantly to the increase of the scatter in the plot. We show that by excluding those points the correlation between SFRD and Hi surface density improves between 10% and 20%. Eight of the 18 galaxies in our sample have Hi maxima higher than the 10M pc-2 value found by Bigiel et al. (2008) for spiral galaxies. Krumholz et al. (2011) predicted that the 10M pc-2 threshold is metallicity dependent in galaxies with sub-solar metallicity, however the theoretically predicted values for our galaxies only match the observed Hi maxima in one case (DDO168). We find that metallicity cannot be the only factor setting the Hi to H2 transition. In fact, we find evidence that the higher the interstellar radiation field (ISRF), the higher the Hi maximum is, hence we suggest that the ISRF should also be taken into consideration in predicting the Hi to H2 transition threshold. We find that even tighter than the SFRD vs. Hi surface density relation is the SFRD vs. V-band surface density relation. Unlike the SFRD vs. Hi surface density relation the SFRD vs. V-band surface density relation follows a power law and can be written as follows: ΣSFR ∝ (10^μv)^-0.43±0.03. The SFRD vs. V-band surface density relation suggests that the existing stars also play a role in the formation of the next generation of stars. Within our sample of dwarf galaxies the average pressure per resolution element and the SFRD are in a 1:1 linear relation: ΣSFR ∝ P_h^1.02±0.05. A similar relation has been found by Blitz & Rosolowsky (2006) for the low-pressure regimes of spiral galaxies. In conclusion we find that in the extreme environments of dwarf galaxies the metal deficiency and the lack of the classic SF stimulators (spiral arms, shear motions) do not impede the star forming process. In these galaxies, dust-shielding becomes predominantly self-shielding and there is plenty of Hi available to achieve this additional task. Existing stars assume the role of pressure enhancers, which in turn will stimulate SF without the need of spiral arms or shear motion.
9

Probing the impact of metallicity on the dust properties in galaxies / Etude de l'impact de la métallicité sur les propriétes de la poussière dans les galaxies

Rémy-Ruyer, Aurélie 13 December 2013 (has links)
Alors que les galaxies évoluent, leur milieu interstellaire (MIS) s’enrichit continuellement en métaux, et cet enrichissement influence la formation d’étoiles. Les galaxies naines de faible métallicité de l’Univers Local sont les candidates idéales pour étudier l’influence de cet enrichissement en métaux sur les propriétés du MIS des galaxies et nous donne un aperçu des processus d’enrichissement et de formation stellaire dans des conditions proches de celles trouvées dans les systèmes pauvres en métaux de l’Univers primordial. Des études précédentes ont montré que le MIS des galaxies naines pose un certain nombre d’énigmes en terme d’abondance des grains, de composition de la poussière et même des processus d’émission en infrarouge lointain (FIR). Cependant, ces études étaient limitées à la poussière chaude émettant à des longueurs d’onde plus courtes que 200 micromètres et étaient effectuées sur un petit nombre de galaxies. Grâce à une sensibilité et une résolution améliorées dans les domaines FIR et submillimétriques (submm), Herschel nous donne une vue nouvelle sur les propriétés de la poussière froide dans les galaxies et nous permet d’étudier les galaxies les plus pauvres en métaux de manière systématique. Dans ce travail, je mène une étude des propriétés des poussières dans les galaxies naines et compare avec des environnements plus riches en métaux, pour aborder la question de l’impact de la métallicité sur les propriétés de la poussière. La nouveauté de ce travail réside dans le fait que les galaxies naines sont étudiées de manière systématique, nous permettant d’accéder aux, et de quantifier les propriétés générales représentatives de ces systèmes. Cette étude est conduite sur toute la gamme de longueurs d’onde infrarouge (IR)-submm, avec les nouvelles observations en FIR/submm d’Herschel, ainsi que des données Spitzer, WISE, IRAS, et 2MASS. Nous complétons ces données avec des mesures en domaine submm de télescopes au sol comme APEX ou le JCMT, pour étudier la présence et les caractéristiques de l’excès submm dans mon échantillon de galaxies. Je collecte aussi les données HI et CO pour accéder aux propriétés du gaz dans ces galaxies et étudier l’évolution du rapport en masse gaz-sur-poussière (G/D) avec la métallicité. Notre étude révèle des propriétés de poussière différentes dans les environnements de faible métallicité que celles observées dans des systèmes plus riches en métaux (par exemple, une poussière globalement plus chaude). Une émission en excès par rapport aux modèles utilisés, apparait souvent aux alentours de 500 micromètres, menant à d’importantes incertitudes sur les propriétés de la poussière, notamment sur la masse de poussière. Les excès les moins importants peuvent cependant être expliqués en utilisant une autre composition pour la poussière, avec des grains plus émissifs. Traceur idéal de l’état d’évolution chimique d’une galaxie, le G/D est en fait bien plus grand que ce que l’on pourrait attendre si l’on considère un modèle simple d’évolution chimique. Interprétée avec des modèles d’évolution chimique plus complexes, incorporant des processus de croissance des grains et/ou une formation d’étoiles épisodique, la relation entre le G/D et la métallicité, ainsi que sa dispersion, peuvent être expliquées par la grande variété d’environnements que nous considérons dans notre étude. / As galaxies evolve, their Interstellar Medium (ISM) becomes continually enriched with metals, and this metal enrichment influences the subsequent star formation. Low metallicity dwarf galaxies of the local Universe are ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies and gives us insight into the enrichment process and star formation under ISM conditions that may provide clues to conditions in early universe metal-poor systems. Previous studies have shown that the ISM of dwarf galaxies poses a number of interesting puzzles in terms of the abundance of dust grains, the dust composition and even the FIR emission processes. However these studies were limited to the warmer dust emitting at wavelengths shorter than 200 microns and were done only on a small number of dwarf galaxies. Thanks to its increased sensitivity and resolution in FIR and submillimeter (submm) wavelengths, Herschel gives us a new view on the cold dust properties in galaxies and enables us to study the lowest metallicity galaxies in a systematic way. In this work, I carry out a study of the dust properties in dwarf galaxies and compare with more metal rich environments, in order to address the question of the impact of metallicity on the dust properties. The novelty of this work lays in the fact that dwarf galaxies are studied here in a systematic way, enabling us to derive and quantify the general properties that are representative of these systems. This study is conducted over the full IR-to-submm range, using new FIR/submm Herschel observations, Spitzer, WISE, IRAS and 2MASS data. We complete this set of data with longer submm measurements from ground-based facilities such as APEX and JCMT to study the presence and characteristics of the submm excess in my sample of galaxies. I also collect Hi and CO data to access the gas properties of the galaxies and study the evolution of the G/D with metallicity. Our study reveal different dust properties in low-metallicity environments than that observed in more metal-richs systems (e.g., an overall warmer dust component). An excess submm emission is often apparent near and/or beyond 500 microns rendering large uncertainties in the dust properties, even for something as fundamental as dust masses. Some of the smallest excesses can be explained by using another dust composition with more emissive grains. Ideal tracer of the chemical evolutionary stage of a galaxy, the gas-to-dust mass ratios (G/D) is found to be much higher than what is expected by simple chemical evolution models. Interpreted with more sophisticated chemical evolution models, including dust growth in the ISM and/or episodic star formation, the relation of the G/D with metallicity and its scatter can be explained by the wide variety of environments we are considering.

Page generated in 0.1031 seconds