• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inhibiting Gluconeogenesis (GNG) Prevents the Effects of Free Fatty Acids (FFA) on Hepatic Glucose Effectiveness (GE) / Die Inhibierung der Glukoneogenese verhindert die Beeinträchtigung freier Fettsäuren auf die hepatische Glukoseeffektivität

Kehlenbrink, Sylvia January 2010 (has links) (PDF)
Free fatty acids (FFA) modulate the effectiveness of glucose to suppress endogenous glucose production (EGP), and increased FFA levels contribute importantly to the loss of glucose effectiveness in type 2 diabetes mellitus (T2DM). Elevating FFA levels in nondiabetic (ND) subjects for at least 6h both increases gluconeogenesis (GNG) and impairs glucose effectiveness. Therefore, we wished to define the extent to which an increase in GNG is responsible for the loss of glucose effectiveness and whether EGP can be inhibited in the presence of elevated plasma FFA by inhibiting GNG with ethanol. To determine the effect of inhibiting GNG on glucose effectiveness, EGP ([3-3H]-glucose) was measured during three separate 7h normoglycemic/hyperglycemic pancreatic clamp studies (somatostatin; basal glucagon/GH/insulin replacement) in n=7 ND subjects (1F/6M; age=45±5 yr; BMI=27.6±3.0 kg/m2). Following an initial 210 min interval of euglycemia (5 mmol/l), blood glucose levels were raised to hyperglycemic levels (10 mmol/l) from t=210-420 min. The first pancreatic clamp study was a baseline study with saline infusions (Lip-/Et-). Lipid emulsion (Liposyn 20%) was infused throughout the second and third study types (Lip+ and Lip+/Et+) to increase FFA to T2DM levels (~ 500 mmol/l). In addition to Liposyn, ethanol (Et) was infused during hyperglycemia in the third study type (Lip+/Et+), using a pharmacokinetic algorithm to attain GNG-inhibiting ethanol levels of 80 mg/dl within 20 min. Under baseline conditions, hyperglycemia suppressed EGP by 61%. After raising plasma FFA to T2DM levels, suppression of EGP by hyperglycemia was impaired in Lip+ (34% decrease). During the Lip+/Et+ co-infusion studies the infusion of ethanol enhanced suppression of EGP by hyperglycemia (65.8% decrease, P=0.004 vs. Lip+) and thus restored glucose effectiveness (P=0.6 vs. Lip-/Et-). Thus, our results confirm the striking effects of elevated plasma FFA to impair glucose effectiveness and suggest that increased GNG contributes importantly to this loss of regulation. Inhibiting GNG could be an effective means of lowering EGP and improving glucose effectiveness in T2DM. / Freie Fettsäuren (FFA) modulieren die Fähigkeit von Glukose die endogene Glukoseproduktion (EGP) zu unterdrücken und spielen eine wichtige Rolle bei dem Verlust der Glukoseeffektivität bei Typ-2-Diabetes mellitus (T2DM). Die Erhöhung freier Fettsäuren in Nicht-Diabetikern (ND) für mindestens 6 Stunden steigert die Glukoneogenese (GNG) und beeinträchtigt die Glukoseeffektivität. Ziel dieser Studien war es daher zu erkennen inwiefern die GNG für den Verlust der Glukoseeffektivität verantwortlich ist und ob die EGP in der Gegenwart von erhöhten FFA, durch die Inhibierung der GNG mit Ethanol, gehemmt werden kann. Um die Auswirkung der Hemmung der GNG auf die Glukoseeffektivität zu bestimmen haben wir die EGP ([3-3H]-glucose) während drei verschiedener normoglykämischen/ hyperglykämischen ‘Pancreatic Clamp’ Studien (Infusion von Somatostatin; Ersetzung basaler Konzentrationen von Glukagon, GH, und Insulin) von jeweils 7 Stunden Dauer in n=7 ND Probanden (1W/6M; Alter=45±5 Jahre; BMI=27.6±3.0 kg/m2) gemessen. Nach einer initialen Phase der Euglykämie (Blutglukosekonzentration bei 5 mmol/l; t=0-210 Minuten) wurde für den Zeitintervall t=210-420 Minuten die Blutglukosekonzentration auf 10 mmol/l erhöht. Die erste ‘Pancreatic Clamp’ Studie war eine Kontrollstudie mit Infusion einer NaCl-Lösung (Lip-/Et-). Eine Lipidemulsion (Liposyn 20%) wurde während der zweiten und dritten Studie (Lip+ und Lip+/Et-) infundiert, um die FFA Plasmaspiegel auf Konzentrationen zu erhöhen, die charakteristisch für den T2DM sind (~ 500 mmol/l). In Ergänzung zu Liposyn wurde Ethanol (Et) während der hyperglykämischen Phase der dritten Studie (Lip+/Et+) zugeführt. Mittels eines pharmakokinetischen Algorithmus wurden innerhalb von 20 Minuten Ethanolwerte erreicht die die GNG hemmen (~80 mg/dl). In den Kontrollstudien verminderte sich die EGP um 61% mit Einsetzen der Hyperglykämie. Nach Infusion von Liposyn in den Lip+ Studien verminderte sich die EGP in Folge der Hyperglykämie jedoch nur um 34%. Die GNG wurde rasch durch die Infusion von Ethanol in den Lip+/Et+ Studien gehemmt und verbesserte signifikant die hyperglykämie-induzierte Suppression der EGP (65% Verminderung der EGP, P=0.004 vs. Lip+). Dadurch wurde die normale Glukoseeffektivität wiederhergestellt (P=0.6 vs. Lip-/Et-). Diese Ergebnisse bestätigen die markante Rolle erhöhter Plasma FFA-Spiegel für die Beeinträchtigung der Glukoseeffektivität und deuten auf die Zentrale Rolle der GNG für den Verlust dieser Regulierung hin. Die Inhibierung der GNG könnte eine effektive Maßnahme sein, die EGP bei T2DM zu vermindern und die Glukoseeffektivität wiederherzustellen.
2

Katabolitinaktivierung der Fructose-1,6-bisphosphatase: Identifizierung und Charakterisierung neuer, für ihren Ubiquitin-Proteasom-katalysierten Abbau benötigter Proteine

Regelmann, Jochen. January 2005 (has links)
Stuttgart, Univ., Diss., 2005.
3

Effects of Increasing Intravenous Glucose Infusions on Lactation Performance, Metabolic Profiles, and Metabolic Gene Expression in Dairy Cows

BahaaAldeen, Al-Trad 24 June 2010 (has links) (PDF)
Knowledge on the precise effects of surplus glucose supply in dairy cows is limited by the lack of information on how intermediary metabolism adapts at different levels of glucose availability. Therefore, a gradual increase of glucose supply via intravenous glucose infusion was used in the present study to test the dose effect of surplus provision of glucose on the metabolic status and milk production of dairy cows. Furthermore, the effects of increasing levels of surplus glucose on mRNA expressions and activities of rate-limiting enzymes involved in hepatic gluconeogenesis were investigated. Based on a previous finding that a positive energy balance may decrease hepatic carnitine palmitoyltransferase (CPT) enzyme activity, it was also of interest whether skeletal muscle CPT activity is downregulated in a similar manner during positive energy balance. Twelve midlactating Holstein-Friesian dairy cows were continuously infused over a 28-d experimental period with either saline (SI group, six cows) or 40% glucose solutions (GI group, six cows). The infusion dose was calculated as a percentage of the daily energy (NEL) requirements by the animal, starting at 0% on d 0 and increasing gradually by 1.25%/d until a maximum dose of 30% was reached by d 24. Dose was then maintained at 30% NEL requirement for 5 d. No infusions were made between d 29-32. Liver and skeletal muscle biopsies were taken on d 0, 8, 16, 24, and 32. Body weight (BW) and back fat thickness (BFT) were recorded on biopsies days. Blood samples were taken every 2 d. In addition, blood samples over 24 h (6-h intervals) were taken the days before each biopsy. Milk and urine samples were taken on biopsies days. BW and BFT increased linearly with increasing glucose dose for GI cows. No differences were observed in the dry matter intake, milk energy output, and energy corrected milk yield between groups. However, milk protein percentage and yield increased linearly in the GI group. Only occasional increases in blood glucose and insulin concentrations were observed in blood samples taken at 1000 h every 2 d. However, during infusion dose of 30% NEL requirements on d 24, GI cows developed postprandial hyperglycemia associated with hyperinsulinemia, coinciding with glucosuria. The revised quantitative insulin sensitivity check index (RQUIKI) indicated linear development of insulin resistance for the GI treatment. GI decreased serum concentrations of beta-hydroxybutyrate (BHBA) and blood urea nitrogen and tended to decrease the serum concentration of non-esterified fatty acids (NEFA). Liver glycogen content increased, while glycogen content in skeletal muscle only tended to increase by GI. No significant changes were observed in the activities and relative mRNA expression levels of hepatic phosphoenolpyruvate carboxykinase and glucose 6-phospatase. The activity of fructose 1,6-bisphosphatase (FBPase) and relative mRNA expression levels of pyruvate carboxylase (PC) were decreased in the GI group but only during the high dose of glucose infusion. Hepatic CPT activity decreased with GI and remained decreased on d 32. The hepatic expression levels of CPT-1A and CPT-2 mRNA were not significantly altered but tended to reflect the changes in enzyme activity. No effect of glucose infusion was observed on skeletal muscle CPT activity. The aforementioned adaptations were reversed four days after the end of glucose infusions except for those of BW, BFT, and lipid metabolism (i.e. serum BHBA and NEFA concentrations, hepatic CPT activity). It is concluded that mid-lactation dairy cows on an energy-balanced diet direct intravenously infused glucose predominantly to body fat reserves but not to increased lactation performance. Cows rapidly adapted to increasing glucose supply but experienced dose-dependent development of insulin resistance corresponding with postprandial hyperglycemia/hyperinsulinemia and glucosuria at dosages equivalent to 30% NEL requirements. The catalytic capacity of key hepatic gluconeogenesis enzymes in mid-lactating dairy cows is not significantly affected by nutritionally relevant increases of glucose supply. Only very high dosages selectively suppress PC transcription and FBPase activity. Finally, it can be concluded that suppression of CPT activity by positive energy balance appears to be specific for the liver in midlactating dairy cows.
4

Effects of Increasing Intravenous Glucose Infusions on Lactation Performance, Metabolic Profiles, and Metabolic Gene Expression in Dairy Cows

BahaaAldeen, Al-Trad 30 March 2010 (has links)
Knowledge on the precise effects of surplus glucose supply in dairy cows is limited by the lack of information on how intermediary metabolism adapts at different levels of glucose availability. Therefore, a gradual increase of glucose supply via intravenous glucose infusion was used in the present study to test the dose effect of surplus provision of glucose on the metabolic status and milk production of dairy cows. Furthermore, the effects of increasing levels of surplus glucose on mRNA expressions and activities of rate-limiting enzymes involved in hepatic gluconeogenesis were investigated. Based on a previous finding that a positive energy balance may decrease hepatic carnitine palmitoyltransferase (CPT) enzyme activity, it was also of interest whether skeletal muscle CPT activity is downregulated in a similar manner during positive energy balance. Twelve midlactating Holstein-Friesian dairy cows were continuously infused over a 28-d experimental period with either saline (SI group, six cows) or 40% glucose solutions (GI group, six cows). The infusion dose was calculated as a percentage of the daily energy (NEL) requirements by the animal, starting at 0% on d 0 and increasing gradually by 1.25%/d until a maximum dose of 30% was reached by d 24. Dose was then maintained at 30% NEL requirement for 5 d. No infusions were made between d 29-32. Liver and skeletal muscle biopsies were taken on d 0, 8, 16, 24, and 32. Body weight (BW) and back fat thickness (BFT) were recorded on biopsies days. Blood samples were taken every 2 d. In addition, blood samples over 24 h (6-h intervals) were taken the days before each biopsy. Milk and urine samples were taken on biopsies days. BW and BFT increased linearly with increasing glucose dose for GI cows. No differences were observed in the dry matter intake, milk energy output, and energy corrected milk yield between groups. However, milk protein percentage and yield increased linearly in the GI group. Only occasional increases in blood glucose and insulin concentrations were observed in blood samples taken at 1000 h every 2 d. However, during infusion dose of 30% NEL requirements on d 24, GI cows developed postprandial hyperglycemia associated with hyperinsulinemia, coinciding with glucosuria. The revised quantitative insulin sensitivity check index (RQUIKI) indicated linear development of insulin resistance for the GI treatment. GI decreased serum concentrations of beta-hydroxybutyrate (BHBA) and blood urea nitrogen and tended to decrease the serum concentration of non-esterified fatty acids (NEFA). Liver glycogen content increased, while glycogen content in skeletal muscle only tended to increase by GI. No significant changes were observed in the activities and relative mRNA expression levels of hepatic phosphoenolpyruvate carboxykinase and glucose 6-phospatase. The activity of fructose 1,6-bisphosphatase (FBPase) and relative mRNA expression levels of pyruvate carboxylase (PC) were decreased in the GI group but only during the high dose of glucose infusion. Hepatic CPT activity decreased with GI and remained decreased on d 32. The hepatic expression levels of CPT-1A and CPT-2 mRNA were not significantly altered but tended to reflect the changes in enzyme activity. No effect of glucose infusion was observed on skeletal muscle CPT activity. The aforementioned adaptations were reversed four days after the end of glucose infusions except for those of BW, BFT, and lipid metabolism (i.e. serum BHBA and NEFA concentrations, hepatic CPT activity). It is concluded that mid-lactation dairy cows on an energy-balanced diet direct intravenously infused glucose predominantly to body fat reserves but not to increased lactation performance. Cows rapidly adapted to increasing glucose supply but experienced dose-dependent development of insulin resistance corresponding with postprandial hyperglycemia/hyperinsulinemia and glucosuria at dosages equivalent to 30% NEL requirements. The catalytic capacity of key hepatic gluconeogenesis enzymes in mid-lactating dairy cows is not significantly affected by nutritionally relevant increases of glucose supply. Only very high dosages selectively suppress PC transcription and FBPase activity. Finally, it can be concluded that suppression of CPT activity by positive energy balance appears to be specific for the liver in midlactating dairy cows.

Page generated in 0.0681 seconds